Simplified Reaction Mechanisms for the Oxidation of Jet Fuel

Jet fuel is a complex mixture comprising thousands of components, which poses challenges for conducting kinetic simulations on its oxidation process. To address this issue, the HyChem (hybrid chemistry) approach has recently been proposed as an effective method for modeling the oxidation of real mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion science and technology Jg. 196; H. 18; S. 5023 - 5047
Hauptverfasser: Song, Shubao, Wang, Cheng, Shao, Jiankun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Taylor & Francis 15.11.2024
Taylor & Francis Ltd
Schlagworte:
ISSN:0010-2202, 1563-521X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Jet fuel is a complex mixture comprising thousands of components, which poses challenges for conducting kinetic simulations on its oxidation process. To address this issue, the HyChem (hybrid chemistry) approach has recently been proposed as an effective method for modeling the oxidation of real multicomponent fuels. Nevertheless, the simplest HyChem approach still involves 31 species and more than 100 reactions, presenting a significant challenge for computational fluid dynamics (CFD) simulations of real multicomponent fuels. In order to enhance the computational efficiency and affordability of numerical simulations for reactive flow, this study developed three simplified mechanisms, namely S66 (28 species and 66 reactions), S8 (12 species and 8 reactions), and S2 (5 species and 2 reactions), which depict the high-temperature (T = 1000~1470 K), high-pressure (P > 1.0 atm), and fuel-lean (φ < 0.7) oxidation of real multicomponent jet fuels inspired by the HyChem methodology and single-step overall reaction. The accuracy of the mechanisms was validated using experimental data, including ignition delay times and laminar flame speed from the literature. Notably, the CPU time required for the simplest HyChem model is longer than 20 times that of the S2 mechanism under identical conditions in the CFD simulation example. This is due to the highly simplified approach of the S2 mechanism. Consequently, the S2 mechanism is expected to be applicable in combustion kinetic simulations in complex environments such as combustion chambers because of its high computational efficiency and relative accuracy.
AbstractList Jet fuel is a complex mixture comprising thousands of components, which poses challenges for conducting kinetic simulations on its oxidation process. To address this issue, the HyChem (hybrid chemistry) approach has recently been proposed as an effective method for modeling the oxidation of real multicomponent fuels. Nevertheless, the simplest HyChem approach still involves 31 species and more than 100 reactions, presenting a significant challenge for computational fluid dynamics (CFD) simulations of real multicomponent fuels. In order to enhance the computational efficiency and affordability of numerical simulations for reactive flow, this study developed three simplified mechanisms, namely S66 (28 species and 66 reactions), S8 (12 species and 8 reactions), and S2 (5 species and 2 reactions), which depict the high-temperature (T = 1000~1470 K), high-pressure (P > 1.0 atm), and fuel-lean (φ < 0.7) oxidation of real multicomponent jet fuels inspired by the HyChem methodology and single-step overall reaction. The accuracy of the mechanisms was validated using experimental data, including ignition delay times and laminar flame speed from the literature. Notably, the CPU time required for the simplest HyChem model is longer than 20 times that of the S2 mechanism under identical conditions in the CFD simulation example. This is due to the highly simplified approach of the S2 mechanism. Consequently, the S2 mechanism is expected to be applicable in combustion kinetic simulations in complex environments such as combustion chambers because of its high computational efficiency and relative accuracy.
Author Wang, Cheng
Shao, Jiankun
Song, Shubao
Author_xml – sequence: 1
  givenname: Shubao
  surname: Song
  fullname: Song, Shubao
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Jiankun
  surname: Shao
  fullname: Shao, Jiankun
  email: jkshao@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNp9kFtLAzEQhYNUsK3-BGHB562TpMnugg9KsV6oFLyAbyHmQlN2k5ps0f57d2199WEYhvnOHOaM0MAHbxA6xzDBUMIlAAZCgEy6ohNCpiUt4AgNMeM0ZwS_D9CwZ_IeOkGjlNbdSCnBQ3T14ppN7awzOns2UrUu-OzJqJX0LjUpsyFm7cpky2-n5e8y2OzRtNl8a-pTdGxlnczZoY_R2_z2dXafL5Z3D7ObRa5IydtcFapgHHCpgFUfhcSGYIuxkrqyU7ClUZp1oCp1oZkEim2pqZSU8ykQaSkdo4v93U0Mn1uTWrEO2-g7S0Ex4Rx4VbGOYntKxZBSNFZsomtk3AkMog9K_AUl-qDEIahOd73XOd9928ivEGstWrmrQ7RReuV6m39P_AAldW9F
Cites_doi 10.1016/j.pecs.2008.10.002
10.1016/j.combustflame.2012.04.010
10.1016/j.fuel.2018.12.027
10.4271/2007-01-0201
10.1016/j.combustflame.2019.01.022
10.1080/00102208108946970
10.1021/acs.energyfuels.7b02078
10.2514/6.2007-770
10.4271/2016-01-0551
10.1016/j.combustflame.2020.07.020
10.1016/j.combustflame.2010.07.019
10.1016/j.proci.2006.08.001
10.1016/j.combustflame.2018.03.019
10.1115/1.4035816
10.1007/s13272-019-00364-7
10.1016/j.ces.2002.12.005
10.1021/ef401992e
10.1016/B978-012285852-9/50005-9
10.1016/j.proci.2010.05.104
10.1016/j.fuel.2018.04.028
10.1016/j.combustflame.2017.02.035
10.1177/1468087411409307
10.1039/C7CP07901J
10.1021/acs.energyfuels.6b02224
10.1016/j.combustflame.2016.12.007
10.1016/0360-1285(85)90012-7
10.1016/j.combustflame.2019.09.013
10.2514/6.2008-972
10.1016/j.combustflame.2018.03.027
10.1016/j.fuel.2019.115715
10.1080/00102200590917248
10.1016/j.combustflame.2018.03.021
10.4271/2007-01-0165
10.1016/j.combustflame.2018.08.006
10.1016/j.combustflame.2018.08.022
10.1021/ef500284x
10.1016/j.combustflame.2010.03.014
10.1115/1.4028870
10.1016/j.proci.2012.06.156
10.1016/j.combustflame.2010.07.001
10.1016/0010-2180(88)90021-1
10.1007/s13272-015-0178-8
10.1016/j.proci.2012.06.014
10.1115/1.4052199
10.1016/j.combustflame.2018.07.012
10.1016/j.combustflame.2011.11.002
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
DOI 10.1080/00102202.2023.2248370
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Public Health
EISSN 1563-521X
EndPage 5047
ExternalDocumentID 10_1080_00102202_2023_2248370
2248370
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12221002
– fundername: State Key Laboratory of Explosion Science and Technology
  grantid: YBKT23-01
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAYXX
ADMLS
ARCSS
CITATION
ID FETCH-LOGICAL-c286t-c7c756018c059b7a1e21f11cad9f40f8ecd5286c8d7d5a031f8d3aa366402af33
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051421300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-2202
IngestDate Wed Aug 13 09:29:39 EDT 2025
Sat Nov 29 04:07:06 EST 2025
Mon Oct 20 23:45:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-c7c756018c059b7a1e21f11cad9f40f8ecd5286c8d7d5a031f8d3aa366402af33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3126606995
PQPubID 55407
PageCount 25
ParticipantIDs informaworld_taylorfrancis_310_1080_00102202_2023_2248370
proquest_journals_3126606995
crossref_primary_10_1080_00102202_2023_2248370
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Combustion science and technology
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CHEMKIN-PRO 15092 (e_1_3_4_5_1) 2009
e_1_3_4_3_1
Keesee C. L. (e_1_3_4_27_1) 2020
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
Gao Y. (e_1_3_4_22_1) 2017
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Eckert P. (e_1_3_4_14_1) 2003
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_37_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_31_1
  doi: 10.1016/j.pecs.2008.10.002
– ident: e_1_3_4_12_1
  doi: 10.1016/j.combustflame.2012.04.010
– ident: e_1_3_4_42_1
  doi: 10.1016/j.fuel.2018.12.027
– ident: e_1_3_4_19_1
  doi: 10.4271/2007-01-0201
– ident: e_1_3_4_30_1
  doi: 10.1016/j.combustflame.2019.01.022
– ident: e_1_3_4_47_1
  doi: 10.1080/00102208108946970
– ident: e_1_3_4_51_1
  doi: 10.1021/acs.energyfuels.7b02078
– ident: e_1_3_4_17_1
  doi: 10.2514/6.2007-770
– ident: e_1_3_4_9_1
  doi: 10.4271/2016-01-0551
– ident: e_1_3_4_49_1
  doi: 10.1016/j.combustflame.2020.07.020
– ident: e_1_3_4_34_1
  doi: 10.1016/j.combustflame.2010.07.019
– ident: e_1_3_4_53_1
  doi: 10.1016/j.proci.2006.08.001
– ident: e_1_3_4_45_1
  doi: 10.1016/j.combustflame.2018.03.019
– ident: e_1_3_4_36_1
  doi: 10.1115/1.4035816
– ident: e_1_3_4_35_1
  doi: 10.1007/s13272-019-00364-7
– ident: e_1_3_4_33_1
  doi: 10.1016/j.ces.2002.12.005
– ident: e_1_3_4_46_1
  doi: 10.1021/ef401992e
– ident: e_1_3_4_23_1
  doi: 10.1016/B978-012285852-9/50005-9
– ident: e_1_3_4_8_1
  doi: 10.1016/j.proci.2010.05.104
– ident: e_1_3_4_38_1
  doi: 10.1016/j.fuel.2018.04.028
– ident: e_1_3_4_18_1
  doi: 10.1016/j.combustflame.2017.02.035
– ident: e_1_3_4_26_1
  doi: 10.1177/1468087411409307
– ident: e_1_3_4_48_1
  doi: 10.1039/C7CP07901J
– ident: e_1_3_4_28_1
  doi: 10.1021/acs.energyfuels.6b02224
– ident: e_1_3_4_52_1
  doi: 10.1016/j.combustflame.2016.12.007
– ident: e_1_3_4_6_1
  doi: 10.1016/0360-1285(85)90012-7
– ident: e_1_3_4_3_1
  doi: 10.1016/j.combustflame.2019.09.013
– ident: e_1_3_4_16_1
– start-page: V04BT04A015
  volume-title: Editor^editors. Turbo Expo: Power for Land, Sea, and Air
  year: 2020
  ident: e_1_3_4_27_1
– ident: e_1_3_4_39_1
– ident: e_1_3_4_7_1
  doi: 10.2514/6.2008-972
– ident: e_1_3_4_20_1
  doi: 10.1016/j.combustflame.2018.03.027
– ident: e_1_3_4_43_1
  doi: 10.1016/j.fuel.2019.115715
– ident: e_1_3_4_15_1
  doi: 10.1080/00102200590917248
– ident: e_1_3_4_50_1
  doi: 10.1016/j.combustflame.2018.03.021
– ident: e_1_3_4_29_1
  doi: 10.4271/2007-01-0165
– ident: e_1_3_4_54_1
  doi: 10.1016/j.combustflame.2018.08.006
– ident: e_1_3_4_41_1
  doi: 10.1016/j.combustflame.2018.08.022
– start-page: 115
  volume-title: Paper presented at 10th US National Combustion Meeting
  year: 2017
  ident: e_1_3_4_22_1
– ident: e_1_3_4_13_1
  doi: 10.1021/ef500284x
– ident: e_1_3_4_21_1
  doi: 10.1016/j.combustflame.2010.03.014
– volume-title: Reaction design
  year: 2009
  ident: e_1_3_4_5_1
– ident: e_1_3_4_37_1
  doi: 10.1115/1.4028870
– start-page: 100
  issue: 2003
  year: 2003
  ident: e_1_3_4_14_1
  article-title: Modeling autoignition and engine knock under spark ignition conditions
  publication-title: SAE Transactions
– ident: e_1_3_4_32_1
  doi: 10.1016/j.proci.2012.06.156
– ident: e_1_3_4_10_1
  doi: 10.1016/j.combustflame.2010.07.001
– ident: e_1_3_4_25_1
  doi: 10.1016/0010-2180(88)90021-1
– ident: e_1_3_4_4_1
– ident: e_1_3_4_2_1
  doi: 10.1007/s13272-015-0178-8
– ident: e_1_3_4_24_1
  doi: 10.1016/j.proci.2012.06.014
– ident: e_1_3_4_40_1
  doi: 10.1115/1.4052199
– ident: e_1_3_4_44_1
  doi: 10.1016/j.combustflame.2018.07.012
– ident: e_1_3_4_11_1
  doi: 10.1016/j.combustflame.2011.11.002
SSID ssj0013321
Score 2.4049308
Snippet Jet fuel is a complex mixture comprising thousands of components, which poses challenges for conducting kinetic simulations on its oxidation process. To...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 5023
SubjectTerms Accuracy
chemical kinetics
Combustion
Combustion chambers
Computational efficiency
Computational fluid dynamics
Delay time
Flame speed
Flames
Fluid dynamics
Fuels
High temperature
Hydrodynamics
Jet engine fuels
Jet fuel
Oxidation
Oxidation process
reaction mechanism
Reaction mechanisms
reduced mechanism
Simulation
Title Simplified Reaction Mechanisms for the Oxidation of Jet Fuel
URI https://www.tandfonline.com/doi/abs/10.1080/00102202.2023.2248370
https://www.proquest.com/docview/3126606995
Volume 196
WOSCitedRecordID wos001051421300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1563-521X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013321
  issn: 0010-2202
  databaseCode: TFW
  dateStart: 19690701
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8igor4MRWnU3Lw2tk0bZOCFxkWEZ2iU3crafoCBd1k7cQ_36RpdUPEgx4LTWhf8r6S934_hI6FL1PC3MhRfqQTFFDEEZnQWSukWWrg1VXFPPd4xfp9PhxGt3U1YVGXVZocWlmgiMpWG-UWadFUxJ1YHLSqjcqjXe2DDICLtsLa9RvVHMRPX_cI1LOcedramCFND89Ps8x5pzns0m-2unJA8cY_fPomWq-jT3xmt8sWWoBRCy33GtK3FlqdwSdsoTV7qIdtr9I2Or3PTQG60mErvgPbEoGvwTQP58VLgfV_YB1Q4pv33FI14bHCl1DieArPO-ghPh_0LpyafsGRHg9LRzLJTL7GpQ7BUiYIeEQRIkUWKd9VHGQW6Bclz1gWCG0cFM-oEDQMdU4qFKW7aHE0HsEewibrylzgEij4ELBUUe4L4TLwwDB0tlG3EXvyalE2EvIJXmpFlhiRJbXI2iiaXZykrI43lOUiSegvYzvNSia1wpohOlJxwygK9v8w9QFa0Y--6VUkQQctlpMpHKIl-VbmxeSo2pof1JXdJw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFFTEy1ScTs2Dr51t0yv4IsMydZugU_dW0vQECrrJ1ok_36RZdUPEB31uE9qT5FySfN8HcMocnli-GRrCCWWBgsIyWMpk1YpJmih6dVEozz22_W436PfDWSyMulapamihiSIKX60Wt9qMLq_EnWkitAJHZdOGDEKKwWURllwZaxV_fi96-jpJoLZWzZP-RrUpUTw_dTMXn-bYS7956yIERZv_8fFbsDFNQMmFnjHbsICDKqw0S923KqzNUBRWYV3v6xENV9qB8_tM3UEXMnMld6hREaSDCj-cjV_GRP4IkTkluX3PtFoTGQpyjTmJJvi8Cw_RZa_ZMqYKDAa3Ay83uM99VbIFXGZhic8stC1hWZyloXBMESBPXfkiD1I_dZn0DyJIKWPU82RZygSle1AZDAe4D0QVXqmJAUeKDrp-ImjgMGb6aKMS6axBo7R7_KqJNmLrk79UmyxWJounJqtBODs6cV7scAgtRxLTX9rWy6GMp2tWNZHJiumFoXvwh65PYKXV67Tj9lX35hBW5SNHQRcttw6VfDTBI1jmb3k2Hh0X8_QD8cjhUQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB688EA8VsX1zIOv1bbpCb6IWjzWVTz3raTJBAq6u-xW8eebNK0HIj7oc5vQTiZzJDPfB7DDPJ45oR1b0otVgoLSsZhgKmvFTGQaXl2WzHP3rbDdjjqd-KqqJhxWZZU6h5YGKKK01Xpz94WsK-L2DA5a2Ubl0l3lgzSAyyiMq9A50Ep-mzx8XCRQ15DmKXOjx9RNPD9N88U9fQEv_WasSw-UzP_Dty_AXBV-kgOjL4swgt0GTB3WrG8NmPkEUNiAWXOqR0yz0hLs3-S6Al2quJVco-mJIBeou4fz4dOQqP8gKqIkl6-54WoiPUnOsCDJMz4uw11yfHt4YlX8CxZ3o6CweMhDnbBFXMVgWcgcdB3pOJyJWHq2jJALX73IIxEKnynrICNBGaNBoJJSJildgbFur4urQHTaJWyMOFL00A8zSSOPMTtEFzVFZxN2a7GnfQOzkTrv6KVGZKkWWVqJrAnx58VJi_J8QxoykpT-MnajXsm02rF6iApV7CCO_bU_TL0Nk1dHSdo6bZ-vw7R64um-RcffgLFi8IybMMFfinw42Cq19A1W0uAD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplified+Reaction+Mechanisms+for+the+Oxidation+of+Jet+Fuel&rft.jtitle=Combustion+science+and+technology&rft.au=Song%2C+Shubao&rft.au=Wang%2C+Cheng&rft.au=Shao%2C+Jiankun&rft.date=2024-11-15&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0010-2202&rft.eissn=1563-521X&rft.volume=196&rft.issue=18&rft.spage=5023&rft.epage=5047&rft_id=info:doi/10.1080%2F00102202.2023.2248370&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2202&client=summon