A note on duality in reverse convex optimization

In this note we explore duality in reverse convex optimization with reverse convex inequality constraints. While we are examining the special case of a finite index set of inequality constraints, we are primarily interested in the general case of an arbitrary infinite index set with neither extra to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 73; číslo 12; s. 3643 - 3651
Hlavní autor: Gwinner, Joachim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 01.12.2024
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this note we explore duality in reverse convex optimization with reverse convex inequality constraints. While we are examining the special case of a finite index set of inequality constraints, we are primarily interested in the general case of an arbitrary infinite index set with neither extra topological structure nor extra measure structure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2024.2304296