Exponential stability of switched block triangular systems under arbitrary switching

In this paper, exponential stability of continuous-time and discrete-time switched $ k\times k $ k × k block triangular systems under arbitrary switching is studied. Firstly, under the assumption that all subsystem matrices are Hurwitz and a family of those corresponding block diagonal matrices is c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 72; číslo 4; s. 655 - 677
Hlavní autoři: Otsuka, Naohisa, Shimizu, Tomoharu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.03.2024
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, exponential stability of continuous-time and discrete-time switched $ k\times k $ k × k block triangular systems under arbitrary switching is studied. Firstly, under the assumption that all subsystem matrices are Hurwitz and a family of those corresponding block diagonal matrices is commutative, we prove that a continuous-time switched linear system is exponentially stable under arbitrary switching. Next, under the assumption that all subsystem matrices are Hurwitz and all those block diagonal matrices are normal, it is shown that the same switched system is exponentially stable under arbitrary switching. Further, under similar conditions we prove that a discrete-time switched linear system is exponentially stable under arbitrary switching. After that, illustrative numerical examples of the obtained results are also given. Finally, we prove that $ 3\times 3 $ 3 × 3 normal matrices have nine parameter representations which are useful for numerical examples (in the Appendix).
AbstractList In this paper, exponential stability of continuous-time and discrete-time switched $ k\times k $ k × k block triangular systems under arbitrary switching is studied. Firstly, under the assumption that all subsystem matrices are Hurwitz and a family of those corresponding block diagonal matrices is commutative, we prove that a continuous-time switched linear system is exponentially stable under arbitrary switching. Next, under the assumption that all subsystem matrices are Hurwitz and all those block diagonal matrices are normal, it is shown that the same switched system is exponentially stable under arbitrary switching. Further, under similar conditions we prove that a discrete-time switched linear system is exponentially stable under arbitrary switching. After that, illustrative numerical examples of the obtained results are also given. Finally, we prove that $ 3\times 3 $ 3 × 3 normal matrices have nine parameter representations which are useful for numerical examples (in the Appendix).
In this paper, exponential stability of continuous-time and discrete-time switched k×k block triangular systems under arbitrary switching is studied. Firstly, under the assumption that all subsystem matrices are Hurwitz and a family of those corresponding block diagonal matrices is commutative, we prove that a continuous-time switched linear system is exponentially stable under arbitrary switching. Next, under the assumption that all subsystem matrices are Hurwitz and all those block diagonal matrices are normal, it is shown that the same switched system is exponentially stable under arbitrary switching. Further, under similar conditions we prove that a discrete-time switched linear system is exponentially stable under arbitrary switching. After that, illustrative numerical examples of the obtained results are also given. Finally, we prove that 3×3 normal matrices have nine parameter representations which are useful for numerical examples (in the Appendix).
Author Otsuka, Naohisa
Shimizu, Tomoharu
Author_xml – sequence: 1
  givenname: Naohisa
  surname: Otsuka
  fullname: Otsuka, Naohisa
  email: otsuka@mail.dendai.ac.jp
  organization: Tokyo Denki University
– sequence: 2
  givenname: Tomoharu
  surname: Shimizu
  fullname: Shimizu, Tomoharu
  organization: Tokyo Denki University
BookMark eNp9kMtOwzAQRS0EEm3hE5AssU5x7MSPHagqD6kSm7K2HMcuLqldbEclf0-qli2rmcW5d0ZnCi598AaAuxLNS8TRAyKIjwubY4TxHJcUiaq-AJOypqSoSyIuweTIFEfoGkxT2iKEqpLUE7Be_uzHNp-d6mDKqnGdywMMFqaDy_rTtLDpgv6COTrlN32nIkxDymaXYO9bE6GKjctRxeGccH5zA66s6pK5Pc8Z-Hherhevxer95W3xtCo05jQXGinbKGWqlhhuEKOaC8uJsMKqBumq5dpw1lJR0VoLahsmmMK4ahFtDLOYzMD9qXcfw3dvUpbb0Ec_npQEMYzrijA2UvWJ0jGkFI2V--h248OyRPIoUP4JlEeB8ixwzD2ecs7bEHfqEGLXyqyGLkQbldduPPN_xS9pSXtE
Cites_doi 10.1016/j.na.2006.01.034
10.1109/9.362846
10.1016/j.mcm.2010.11.062
10.1016/j.aml.2009.03.023
10.1137/1.9781611970777
10.1007/1-84628-131-8
10.1007/978-0-85729-256-8
10.1016/0024-3795(87)90168-6
10.1016/S0167-6911(97)00004-2
10.1007/978-1-4612-0107-6
10.1109/9.754812
10.1016/0005-1098(91)90047-6
10.1016/S0167-6911(98)00082-6
10.1007/978-1-4612-0017-8
10.1016/j.na.2006.02.024
10.1016/j.nahs.2009.03.004
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/03081087.2022.2160945
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 677
ExternalDocumentID 10_1080_03081087_2022_2160945
2160945
Genre Research Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 19K04443
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-c0afbaae4d3e8e076c89f839f9fab0c4d8ce87d69465c96fb797a224d06be7f23
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-1087
IngestDate Wed Aug 13 09:14:17 EDT 2025
Sat Nov 29 03:18:44 EST 2025
Mon Oct 20 23:44:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-c0afbaae4d3e8e076c89f839f9fab0c4d8ce87d69465c96fb797a224d06be7f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3072254377
PQPubID 186326
PageCount 23
ParticipantIDs crossref_primary_10_1080_03081087_2022_2160945
informaworld_taylorfrancis_310_1080_03081087_2022_2160945
proquest_journals_3072254377
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Linear & multilinear algebra
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Matni N (e_1_3_3_16_1) 2011
Zhai G (e_1_3_3_19_1) 2014
Shorten RN (e_1_3_3_12_1) 1998
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_18_1
e_1_3_3_17_1
Mori Y (e_1_3_3_11_1) 1997
e_1_3_3_14_1
e_1_3_3_13_1
Lin H (e_1_3_3_4_1) 2014; 1
e_1_3_3_15_1
e_1_3_3_3_1
e_1_3_3_10_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_22_1
References_xml – start-page: 2228
  year: 2014
  ident: e_1_3_3_19_1
  article-title: Stability and stabilization of switched block triangular systems
  publication-title: The 57th Japan Joint Automatic Control Conference, SICE
– ident: e_1_3_3_14_1
  doi: 10.1016/j.na.2006.01.034
– ident: e_1_3_3_8_1
  doi: 10.1109/9.362846
– ident: e_1_3_3_18_1
  doi: 10.1016/j.mcm.2010.11.062
– ident: e_1_3_3_10_1
  doi: 10.1016/j.aml.2009.03.023
– ident: e_1_3_3_20_1
  doi: 10.1137/1.9781611970777
– ident: e_1_3_3_6_1
  doi: 10.1007/1-84628-131-8
– ident: e_1_3_3_7_1
  doi: 10.1007/978-0-85729-256-8
– volume: 1
  issue: 1
  year: 2014
  ident: e_1_3_3_4_1
  article-title: Hybrid dynamical systems: an introduction to control and verification
  publication-title: Foundations and Trends in Systems and Control
– ident: e_1_3_3_21_1
  doi: 10.1016/0024-3795(87)90168-6
– ident: e_1_3_3_9_1
  doi: 10.1016/S0167-6911(97)00004-2
– start-page: 3723
  year: 1998
  ident: e_1_3_3_12_1
  article-title: On the stability and existence of common Lyapunov functions for stable linear switching systems
  publication-title: 37th Conference on Decision and Control
– start-page: 1440
  year: 2011
  ident: e_1_3_3_16_1
  article-title: Stability of switched block upper-triangular linear systems with switching delay: application to large distributed systems
  publication-title: American Control Conference
– ident: e_1_3_3_5_1
  doi: 10.1007/978-1-4612-0107-6
– ident: e_1_3_3_2_1
  doi: 10.1109/9.754812
– ident: e_1_3_3_22_1
  doi: 10.1016/0005-1098(91)90047-6
– ident: e_1_3_3_13_1
  doi: 10.1016/S0167-6911(98)00082-6
– ident: e_1_3_3_3_1
  doi: 10.1007/978-1-4612-0017-8
– ident: e_1_3_3_15_1
  doi: 10.1016/j.na.2006.02.024
– ident: e_1_3_3_17_1
  doi: 10.1016/j.nahs.2009.03.004
– start-page: 3530
  year: 1997
  ident: e_1_3_3_11_1
  article-title: A solution to the common Lyapunov function problem for continuous-time systems
  publication-title: 36th Conference on Decision and Control
SSID ssj0004135
Score 2.3144557
Snippet In this paper, exponential stability of continuous-time and discrete-time switched $ k\times k $ k × k block triangular systems under arbitrary switching is...
In this paper, exponential stability of continuous-time and discrete-time switched k×k block triangular systems under arbitrary switching is studied. Firstly,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 655
SubjectTerms arbitrary switching
block triangular systems
Continuous time systems
Discrete time systems
exponential stability
Linear systems
normal matrices
Stability
Subsystems
Switched systems
Switching
Title Exponential stability of switched block triangular systems under arbitrary switching
URI https://www.tandfonline.com/doi/abs/10.1080/03081087.2022.2160945
https://www.proquest.com/docview/3072254377
Volume 72
WOSCitedRecordID wos000918159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1563-5139
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004135
  issn: 0308-1087
  databaseCode: TFW
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7FaZQ9eU7dJuo-jSIsXi4eKvYV9QhHSktTXv3d2s_GBiAe9JZBZlpndeYRvvkHoXA2Mdi4F72e1SqD-0onIjEi0kJyCCBdEhmETbDLhs5m4jWjCOsIqfQ3tGqKI4Kv95ZaqbhFxF55iBR4YVHdp2k8HFEoU32YOmb0H9U3H9x-dkXHEZhZITDlre3h-WuVLdPrCXfrNV4cANN7-h63voK2YfeLL5rjsojVb7qHNm3fq1nofTUcvy0XpMUTwIaSOATz7ihcO189zb2KDFQTAB-znfZR-kH2FGzroGvuGtArLSs1DM3-UgOB4gO7Go-nVdRJHLyQ65XSVaCKdktLmJrPcEkbBaA5yKSecVETnhmvLmaEip0MtqFNMMAnZgCFUWebS7BB1StjsEcLgP42Be06GSuQ5yZQntGdSUAOZGBRPXdRvVV4sG4aNYtASl0Z1FV5dRVRXF4nPhilW4deGa-aQFNkvsr3WikW8rCBCWOo5ARg7_sPSJ2gDXvOAT8t6qLOqHu0pWtdPq3ldnYVj-Qb5-ODL
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60CurBt1itugevqWmS7maPIi2KbU8Ve1v2kYUipCWJr3_v7CbRFhEPegsksywzu_MIM9-H0KXsaGVMAN4vUdKD-kt5LNTMU0zEBERi5gtHNkFHo3gyYYuzMLat0tbQpgSKcL7aXm77M7puibuyGCvwQKG8C4J20CFQo3RX0Zplp7MF2Lj_-DUbWZFshg7GNKb1FM9PyyzFpyX00m_e2oWg_s5_bH4XbVcJKL4uT8weWknSfbQ1_ERvzQ_QuPc2n6W2jQg-hOzR9c--45nB-evUWlljCTHwCVvKj9Ry2We4RITOsZ1Jy7DI5NTN81cSEB8P0UO_N7659Sr2BU8FMSk85QsjhUgiHSZx4lMCdjOQThlmhPRVpGOVxFQTFpGuYsRIyqiAhED7RCbUBOERaqSw2WOEwYVqDVfd70oWRX4oLaY9FYxoSMagfmqidq1zPi9BNninxi6t1MWtunilriZii5bhhfu7YUoqEh7-Ituqzcir-woiPg0sLAClJ39Y-gJt3I6HAz64G92fok14Fbl2tbCFGkX2nJyhdfVSTPPs3J3RDy0o5O4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60iujBt1itugevqWkeu9mjaIOilh4q9hb2kYUitCWpr3_v7GajFhEPegsksyzznjDzDUKnoqOk1gF4v1wKD-ov6bFQMU8ynhAgSZjP7bIJ2uslwyHru27C0rVVmhpaV0AR1lcb454qXXfEnRmIFXigUN0FQTvoEChR4kW0BKlzbBR7kD58jka6HZuhRTFNaD3E89Mxc-FpDrz0m7O2ESjd-Ie7b6J1l37i80pfttBCPt5Ga3cf2K3lDhp0X6eTsWkigg8hd7Tds294onH5MjIyVlhABHzEZuHH2GyyL3CFB11iM5FWYF6IkZ3mdxQQHXfRfdodXFx5bveCJ4OEzDzpcy04zyMV5knuUwJS05BMaaa58GWkEpknVBEWkVgyogVllEM6oHwicqqDcA81xnDZfYTBgSoFhu7HgkWRHwqDaE85IwpSMaiemqhdszybVhAbWadGLnXsygy7MseuJmJfBZPN7L8NXS0iycJfaFu1FDNnrUDi08CAAlB68IejT9BK_zLNbq97N4doFd5EtlctbKHGrHjKj9CyfJ6NyuLYaug7kQ3joA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+stability+of+switched+block+triangular+systems+under+arbitrary+switching&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Otsuka%2C+Naohisa&rft.au=Shimizu%2C+Tomoharu&rft.date=2024-03-03&rft.pub=Taylor+%26+Francis&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=72&rft.issue=4&rft.spage=655&rft.epage=677&rft_id=info:doi/10.1080%2F03081087.2022.2160945&rft.externalDocID=2160945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon