Global Uniqueness and Stability in Determining the Damping Coefficient of an Inverse Hyperbolic Problem with NonHomogeneous Neumann B.C. through an Additional Dirichlet Boundary Trace
We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary $\Gamma=\partial\Omega=\overline{\Gamma_0\cup\Gamma_1}$, $\Gamma_0\cap\Gamma_1=\emptyset$, subject to nonhomogeneous Neumann boundary conditions on the entire boundar...
Uloženo v:
| Vydáno v: | SIAM journal on mathematical analysis Ročník 43; číslo 4; s. 1631 - 1666 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
| Témata: | |
| ISSN: | 0036-1410, 1095-7154 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary $\Gamma=\partial\Omega=\overline{\Gamma_0\cup\Gamma_1}$, $\Gamma_0\cap\Gamma_1=\emptyset$, subject to nonhomogeneous Neumann boundary conditions on the entire boundary $\Gamma$. We then study the inverse problem of determining the interior damping coefficient of the equation by means of an additional measurement of the Dirichlet boundary trace of the solution, in a suitable, explicit subportion $\Gamma_1$ of the boundary $\Gamma$, and over a computable time interval $T>0$. Under sharp conditions on the complementary part $\Gamma_0= \Gamma\backslash\Gamma_1$, and $T>0$, and under weak regularity requirements on the data, we establish the two canonical results in inverse problems: (i) global uniqueness and (ii) Lipschitz stability (at the $L^2$-level). The latter is the main result of this paper. Our proof relies on three main ingredients: (a) sharp Carleman estimates at the $H^1 \times L_2$-level for second-order hyperbolic equations [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (b) a correspondingly implied continuous observability inequality at the same energy level [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (c) sharp interior and boundary regularity theory for second-order hyperbolic equations with Neumann boundary data [I. Lasiecka and R. Triggiani, Ann. Mat. Pura. Appl. (4), 157 (1990), pp. 285-367], [I. Lasiecka and R. Triggiani, J. Differential Equations, 94 (1991), pp. 112-164], [I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems, and applications, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 3, Springer-Verlag, Berlin, 1994, pp. 104-158], [D. Tataru, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 185-206]. The proof of the linear uniqueness result (section 4, step 5) also takes advantage of a convenient tactical route "post-Carleman estimates" suggested by Isakov in [V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Springer, New York, 2006, Thm.,8.2.2, p.,231]. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1410 1095-7154 |
| DOI: | 10.1137/100808988 |