Algorithmic research on surface roughness in laser-melted claddings: A review

As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface engineering Jg. 40; H. 9-10; S. 933 - 944
Hauptverfasser: Zhao, Changlong, Zhang, Zihao, Yu, Zice, Du, Weilong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 01.09.2024
Schlagworte:
ISSN:0267-0844, 1743-2944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, with a particular focus on refining its surface roughness, it has emerged as a significant area of interest among numerous investigators. This paper reviews a variety of methods for optimizing the surface roughness of laser cladding, covering from deterministic algorithms such as Taguchi's method, orthogonal experimental method, gradient descent method, to stochastic algorithms including neural network, genetic algorithm, Gray Wolf algorithm, and even hybrid algorithms combining multiple algorithms like neural network genetic algorithm, adaptive neural fuzzy reasoning algorithm, and improved genetic algorithms for response surface analysis, and so on. Through comparative analysis, it is found that the hybrid algorithms can quickly generate the optimal optimization parameters for the sake of achieving the optimal surface quality since they may combine the accuracy of deterministic algorithms and the robustness of stochastic algorithms. In addition, this paper also looks forward to the future development direction of surface quality optimization methods for laser cladding, aiming at laying a foundation for the research work of high-quality coating preparation.
AbstractList As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, with a particular focus on refining its surface roughness, it has emerged as a significant area of interest among numerous investigators. This paper reviews a variety of methods for optimizing the surface roughness of laser cladding, covering from deterministic algorithms such as Taguchi's method, orthogonal experimental method, gradient descent method, to stochastic algorithms including neural network, genetic algorithm, Gray Wolf algorithm, and even hybrid algorithms combining multiple algorithms like neural network genetic algorithm, adaptive neural fuzzy reasoning algorithm, and improved genetic algorithms for response surface analysis, and so on. Through comparative analysis, it is found that the hybrid algorithms can quickly generate the optimal optimization parameters for the sake of achieving the optimal surface quality since they may combine the accuracy of deterministic algorithms and the robustness of stochastic algorithms. In addition, this paper also looks forward to the future development direction of surface quality optimization methods for laser cladding, aiming at laying a foundation for the research work of high-quality coating preparation.
Author Zhao, Changlong
Du, Weilong
Zhang, Zihao
Yu, Zice
Author_xml – sequence: 1
  givenname: Changlong
  orcidid: 0000-0003-2906-2486
  surname: Zhao
  fullname: Zhao, Changlong
  organization: College of Mechanical and Vehicle Engineering
– sequence: 2
  givenname: Zihao
  surname: Zhang
  fullname: Zhang, Zihao
  organization: College of Mechanical and Vehicle Engineering
– sequence: 3
  givenname: Zice
  surname: Yu
  fullname: Yu, Zice
  organization: College of Mechanical and Vehicle Engineering
– sequence: 4
  givenname: Weilong
  surname: Du
  fullname: Du, Weilong
  organization: College of Mechanical and Vehicle Engineering
BookMark eNp90M9KAzEQBvAgFWyrD-AtL7A1yaabxFspaoWKFz0v-TPZpmwTSbaKb29LPSn0NIeZ3wfzTdAopggI3VIyo1SIO8IaQSTnjFOmpOLNBRpTweuKKc5HaHzcV8eDKzQpZUsIo0LOx-hl0Xcph2GzCxZnKKCz3eAUcdlnry3gnPbdJkIpOETc6wK52kE_gMO2186F2JV7vDjQzwBf1-jS677Aze-covfHh7flqlq_Pj0vF-vKMtkMlXRCGiqFpnMFThswqtHOOMekMdzXcyqNFs55wwVXjVCM2Aa4J97VIL2sp4iecm1OpWTw7UcOO52_W0raYx_tvz4ORvwxNgx6CCkOWYf-rJydZNEdtNu0z_Hw3BnwA4WedFs
CitedBy_id crossref_primary_10_1016_j_surfcoat_2025_132457
Cites_doi 10.1007/s11042-020-10139-6
10.3390/ma15165522
10.1177/0036850419881883
10.3390/su13063208
10.1007/s12206-016-0831-0
10.1080/01694243.2022.2159298
10.3390/ma14040781
10.1155/2020/9176509
10.1016/j.jmrt.2021.02.076
10.1016/j.jksues.2021.03.002
10.1109/ICIG.2009.115
10.2139/ssrn.4091362
10.1080/07408179208964244
10.1109/4235.996017
10.1088/2053-1591/aab7cb
10.1179/1362171815Y.0000000044
10.1007/s11277-017-5224-x
10.3390/machines10040263
10.1088/2631-8695/acc9fe
10.2351/7.0001138
10.1016/S0257-8972(96)03022-8
10.1243/09544062JMES1782
10.1007/s00170-014-6338-x
10.1023/A:1022602019183
10.1109/RAECS.2015.7453288
10.1088/2051-672X/aca3bd
10.1016/j.optlastec.2021.107246
10.2351/7.0001108
10.1016/j.phpro.2013.11.058
10.1109/TAP.2023.3281667
10.2351/1.5096126
10.1111/j.1747-1567.2011.00803.x
10.1007/s10845-020-01725-4
10.1007/s00170-012-4688-9
10.3390/s22207955
10.1016/j.optlastec.2021.106915
10.22441/ijimeam.v5i2.21679
10.22616/ERDev2017.16.N242
10.1007/s10845-012-0682-1
10.2351/1.5061649
10.1007/s10462-023-10466-8
10.1080/09276440.2024.2331333
10.1016/j.proeng.2011.08.745
10.1016/j.surfcoat.2023.129988
10.1007/s11666-016-0431-7
10.1109/ICCNEA53019.2021.00014
10.17222/mit.2019.263
10.3390/app10093167
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID AAYXX
CITATION
DOI 10.1177/02670844241298946
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1743-2944
EndPage 944
ExternalDocumentID 10_1177_02670844241298946
10.1177_02670844241298946
GrantInformation_xml – fundername: Natural Science Foundation of Jilin Province
  grantid: 20240101088JC
  funderid: https://doi.org/10.13039/100007847
GroupedDBID 002
0R~
123
1~B
29Q
4.4
8WZ
A6W
AAGLT
AAJMT
AAQXI
AATAA
ABCCY
ABDBF
ABFIM
ABJNI
ABKLS
ABPNF
ABRHV
ABUJY
ABUNW
ABXYU
ACFOO
ACGFS
ACOXC
ACTIO
ACTTO
ACUHS
ACUIR
ACVGN
ADCVX
ADEBD
ADGTB
ADUKL
ADUMR
ADVBO
ADXEU
ADYCX
AEAXR
AEHZU
AENEX
AEXNY
AEYOC
AEZBV
AFION
AGDLA
AGKLV
AGVKY
AGWUF
AHDMH
AIJEM
AKHJE
AKOOK
ALKDR
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
ALXIB
AMATQ
AQRUH
ARTOV
AWYRJ
BGSSV
BLEHA
BPACV
BWMZZ
CCCUG
CS3
CYRSC
DAOYK
DGEBU
DKSSO
DU5
E01
EBS
EJD
FETWF
FHBDP
H13
HCLVR
HZ~
IFELN
IPNFZ
J8X
KYCEM
LJTGL
M46
M4Z
MV1
NUSFT
O9-
OPCYK
P2P
P75
P7B
Q1R
RIG
SAUOL
SCNPE
SFC
TAJZE
TDBHL
TFL
TFW
TTHFI
ZE2
AAEJI
AAPII
AAYXX
ABUAX
AJGYC
AJVBE
CITATION
ID FETCH-LOGICAL-c286t-8d78b187a159edabeb96adbdd28bb4f3518ba7ddfb474967920c6e4f0fd3e8f83
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362430300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0267-0844
IngestDate Sat Nov 29 08:11:09 EST 2025
Tue Nov 18 22:36:29 EST 2025
Tue Jun 17 22:30:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords hybrid algorithm
stochastic algorithm
deterministic algorithm
surface roughness
laser cladding technology
Language English
License https://journals.sagepub.com/page/policies/text-and-data-mining-license
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-8d78b187a159edabeb96adbdd28bb4f3518ba7ddfb474967920c6e4f0fd3e8f83
ORCID 0000-0003-2906-2486
PageCount 12
ParticipantIDs crossref_primary_10_1177_02670844241298946
crossref_citationtrail_10_1177_02670844241298946
sage_journals_10_1177_02670844241298946
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Surface engineering
PublicationYear 2024
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Zhu, Xue, Lan 2021; 138
Li, Lin, Liu 2021; 13
Zhang, Gong, Tang 2022; 10
Balan, Shivasankaran, Magibalan 2018; 5
Haji, Abdulazeez 2021; 18
Cheng, Xing, Dong 2022; 15
Lian, Zhao, Zhang 2020; 10
Riquelme, Escalera-Rodriguez, Rodrigo 2016; 25
Quan, Guo, Li 2020; 103
Li, Ma 1997; 90
Guo, Chen, Cai 2013; 50
So, Seo, Kim 2022; 22
Deb, Pratap, Agarwal 2002; 6
Yusoff, Ngadiman, Zain 2011; 15
Xia, Pan, Polden 2022; 33
Li, Jia, Han 2023; 37
Toma, Hillig, Kaubisch 2023; 35
Prakash, Kansal, Pabla 2016; 30
Paulus, Ruppert, Vielhaber 2023; 35
Župerl, Irgolič, Kovačič 2020; 54
Xu, Wu, Hong 2011; 44
Marzban, Ghaseminejad, Ahmadzadeh 2015; 76
Zhao, Sun, Guo 2019; 31
Zhang, Xu, Sun 2022; 10
Budhu, Grbic 2023; 71
Murmu, Parida, Das 2023; 473
Karna, Sahai 2012; 1
Cao, Li, Hu 2021; 142
Thorat, Pandit, Balote 2022; 8
Qian, Dai, Guo 2021; 14
Zhong, Liu 2010; 224
Katoch, Chauhan, Kumar 2021; 80
Linsen, Bo, Yayin 2019; 1
Janardhan, Krishna 2012; 3
Yang, Lai, Yue 2020; 2020
Du, He, Zhou 2023; 5
Wu, Feng 2018; 102
Tanigawa, Abe, Tsukamoto 2015; 20
Ahmed, Alam, Hassan 2023; 56
Tsui 1992; 24
Zhang, Shen, Wang 2021; 12
Zhao, Jia, Zhao 2024; 31
La Fé-Perdomo, Ramos-Grez, Mujica 2023; 35
Putra, Timuda, Darsono 2023; 5
Calignano, Manfredi, Ambrosio 2013; 67
Yoganandh, Kannan, Kumaresh Babu 2013; 37
Zhang, Luo, Ma 2023; 5
Goldberg, Holland 1988; 3
Xiong, Zhang, Hu 2014; 25
bibr55-02670844241298946
Janardhan M (bibr59-02670844241298946) 2012; 3
bibr48-02670844241298946
bibr35-02670844241298946
bibr22-02670844241298946
bibr28-02670844241298946
bibr15-02670844241298946
bibr5-02670844241298946
Zhang W (bibr42-02670844241298946) 2023; 5
bibr43-02670844241298946
bibr50-02670844241298946
bibr30-02670844241298946
bibr9-02670844241298946
bibr36-02670844241298946
bibr19-02670844241298946
Paturi UMR (bibr38-02670844241298946) 2018
bibr49-02670844241298946
bibr16-02670844241298946
bibr61-02670844241298946
bibr26-02670844241298946
bibr51-02670844241298946
Fukuda T (bibr56-02670844241298946) 1993
bibr10-02670844241298946
bibr8-02670844241298946
bibr11-02670844241298946
bibr27-02670844241298946
bibr57-02670844241298946
bibr37-02670844241298946
bibr47-02670844241298946
bibr17-02670844241298946
bibr41-02670844241298946
bibr21-02670844241298946
Mackey L (bibr31-02670844241298946) 2018
bibr1-02670844241298946
bibr32-02670844241298946
Thorat M (bibr39-02670844241298946) 2022; 8
bibr45-02670844241298946
bibr7-02670844241298946
bibr58-02670844241298946
Haji SH (bibr33-02670844241298946) 2021; 18
Linsen S (bibr29-02670844241298946) 2019; 1
bibr12-02670844241298946
bibr25-02670844241298946
bibr52-02670844241298946
bibr40-02670844241298946
bibr2-02670844241298946
bibr53-02670844241298946
bibr60-02670844241298946
bibr20-02670844241298946
bibr46-02670844241298946
bibr6-02670844241298946
bibr23-02670844241298946
bibr3-02670844241298946
bibr13-02670844241298946
Karna SK (bibr18-02670844241298946) 2012; 1
bibr24-02670844241298946
bibr34-02670844241298946
bibr14-02670844241298946
Xu ZM (bibr54-02670844241298946) 2011; 44
bibr44-02670844241298946
bibr4-02670844241298946
References_xml – volume: 1
  start-page: 1
  year: 2012
  end-page: 7
  article-title: An overview on Taguchi method
  publication-title: Int J Eng Math Sci
– volume: 35
  start-page: 042034
  year: 2023
  article-title: Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches
  publication-title: J Laser Appl
– volume: 44
  start-page: 1012
  year: 2011
  end-page: 1017
  article-title: Quality prediction of laser cladding based on evolutionary neural network
  publication-title: Appl Mech Mater
– volume: 10
  start-page: 263
  year: 2022
  article-title: Application of a bio-inspired algorithm in the process parameter optimization of laser cladding
  publication-title: Machines
– volume: 35
  start-page: 042047
  year: 2023
  article-title: Latest developments in coaxial multiwire high-power laser cladding
  publication-title: J Laser Appl
– volume: 50
  start-page: 375
  year: 2013
  end-page: 382
  article-title: Prediction of simulating and experiments for co-based alloy laser cladding by HPDL
  publication-title: Phys Procedia
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 10
  start-page: 3167
  year: 2020
  article-title: Investigation into micro-hardness and wear resistance of 316L/SiC composite coating in laser cladding
  publication-title: Appl Sci
– volume: 102
  start-page: 1645
  year: 2018
  end-page: 1656
  article-title: Development and application of artificial neural network
  publication-title: Wirel Pers Commun
– volume: 24
  start-page: 44
  year: 1992
  end-page: 57
  article-title: An overview of Taguchi method and newly developed statistical methods for robust design
  publication-title: Iie Trans
– volume: 90
  start-page: 1
  year: 1997
  end-page: 5
  article-title: Study on overlapping in the laser cladding process
  publication-title: Surf Coat Technol
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed Tools Appl
– volume: 18
  start-page: 2715
  year: 2021
  end-page: 2743
  article-title: Comparison of optimization techniques based on gradient descent algorithm: a review
  publication-title: PalArch’s J Archaeol Egypt/Egyptol
– volume: 56
  start-page: 13521
  year: 2023
  end-page: 13617
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif Intell Rev
– volume: 3
  start-page: 270
  year: 2012
  article-title: Multi-objective optimization of cutting parameters for surface roughness and metal removal rate in surface grinding using response surface methodology
  publication-title: Int J Adv Eng Technol
– volume: 10
  start-page: 044007
  year: 2022
  article-title: Surface quality optimization of laser cladding based on surface response and genetic neural network model
  publication-title: Surf Topogr: Metrol Prop
– volume: 71
  start-page: 7679
  year: 2023
  end-page: 7683
  article-title: Fast and accurate optimization of metasurfaces with gradient descent and the woodbury matrix identity
  publication-title: IEEE Trans Antennas Propag
– volume: 35
  start-page: 148
  year: 2023
  end-page: 156
  article-title: Surface roughness Ra prediction in selective Laser melting of 316L stainless steel by means of artificial intelligence inference
  publication-title: J King Saud Univ-Eng Sci
– volume: 224
  start-page: 1041
  year: 2010
  end-page: 1060
  article-title: Laser surface cladding: the state of the art and challenges
  publication-title: Proc Inst Mech Eng Part C: J Mech Eng Sci
– volume: 13
  start-page: 3208
  year: 2021
  article-title: An improved gray wolf optimization algorithm to solve engineering problems
  publication-title: Sustainability
– volume: 15
  start-page: 3978
  year: 2011
  end-page: 3983
  article-title: Overview of NSGA-II for optimizing machining process parameters
  publication-title: Procedia Eng
– volume: 473
  start-page: 129988
  year: 2023
  article-title: Evaluation of laser cladding of Ti6Al4V-ZrO2-CeO2 composite coating on Ti6Al4V alloy substrate
  publication-title: Surf Coat Technol
– volume: 76
  start-page: 1163
  year: 2015
  end-page: 1172
  article-title: Experimental investigation and statistical optimization of laser surface cladding parameters
  publication-title: Int J Adv Manuf Technol
– volume: 37
  start-page: 48
  year: 2013
  end-page: 58
  article-title: Optimization of GMAW process parameters in austenitic stainless steel cladding using genetic algorithm based computational models
  publication-title: Exp Tech
– volume: 8
  start-page: 12
  year: 2022
  end-page: 16
  article-title: Artificial neural network: a brief study
  publication-title: Asian J Converg Technol (AJCT) ISSN-2350-1146
– volume: 31
  start-page: 022512
  year: 2019
  article-title: Investigation on the effect of laser remelting for laser cladding nickel based alloy
  publication-title: J Laser Appl
– volume: 14
  start-page: 781
  year: 2021
  article-title: Microstructure and wear resistance of multi-layer Ni-based alloy cladding coating on 316L SS under different laser power
  publication-title: Materials
– volume: 67
  start-page: 2743
  year: 2013
  end-page: 2751
  article-title: Influence of process parameters on surface roughness of aluminum parts produced by DMLS
  publication-title: Int J Adv Manuf Technol
– volume: 25
  start-page: 157
  year: 2014
  end-page: 163
  article-title: Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis
  publication-title: J Intell Manuf
– volume: 31
  start-page: 1
  year: 2024
  end-page: 22
  article-title: Research progress on the effect of surface texture on the friction properties of CoCrMo alloys
  publication-title: Compos Interfaces
– volume: 20
  start-page: 601
  year: 2015
  end-page: 606
  article-title: Effect of laser path overlap on surface roughness and hardness of layer in laser cladding
  publication-title: Sci Technol Weld Join
– volume: 22
  start-page: 7955
  year: 2022
  article-title: Prediction of metal additively manufactured surface roughness using deep neural network
  publication-title: Sensors
– volume: 37
  start-page: 2556
  year: 2023
  end-page: 2586
  article-title: Study on parameter optimization of laser cladding Fe60 based on GA-BP neural network
  publication-title: J Adhes Sci Technol
– volume: 5
  start-page: 046527
  year: 2018
  article-title: Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm
  publication-title: Mater Res Exp
– volume: 142
  start-page: 107246
  year: 2021
  article-title: Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing
  publication-title: Opt Laser Technol
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
– volume: 30
  start-page: 4195
  year: 2016
  end-page: 4204
  article-title: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology
  publication-title: J Mech Sci Technol
– volume: 54
  start-page: 747
  year: 2020
  end-page: 753
  article-title: Minimum depth of milling to obtain the desired surface roughness in multi-layer materials
  publication-title: Mater Technol/Materiali in Tehnologije
– volume: 138
  start-page: 106915
  year: 2021
  article-title: Recent research and development status of laser cladding: a review
  publication-title: Opt Laser Technol
– volume: 103
  start-page: 0036850419881883
  year: 2020
  article-title: Optimization design and experimental study of vortex pump based on orthogonal test
  publication-title: Sci Prog
– volume: 1
  issue: 2
  year: 2019
  article-title: Optimization of process parameters of laser cladding 304L alloy powder based on orthogonal experiment
  publication-title: Mech Eng Sci
– volume: 5
  year: 2023
  article-title: Prediction model of surface roughness of selective laser melting formed parts based on back propagation neural network
  publication-title: Eng Rep
– volume: 12
  start-page: 100
  year: 2021
  end-page: 116
  article-title: Improving surface properties of fe-based laser cladding coating deposited on a carbon steel by heat assisted ultrasonic burnishing
  publication-title: J Mater Res Technol
– volume: 2020
  start-page: 9176509
  year: 2020
  article-title: Parametric optimization of laser additive manufacturing of Inconel 625 using Taguchi method and grey relational analysis
  publication-title: Scanning
– volume: 15
  start-page: 5522
  year: 2022
  article-title: An overview of laser metal deposition for cladding: defect formation mechanisms, defect suppression methods and performance improvements of laser-cladded layers
  publication-title: Materials
– volume: 5
  start-page: 025015
  year: 2023
  article-title: Multi-objective optimization of process parameters of laser cladding 15-5PH alloy powder based on gray-fuzzy taguchi approach
  publication-title: Eng Res Exp
– volume: 33
  start-page: 1467
  year: 2022
  end-page: 1482
  article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
  publication-title: J Intell Manuf
– volume: 5
  start-page: 56
  year: 2023
  end-page: 62
  article-title: Optimization of machining parameters on the surface roughness of aluminum in cnc turning process using taguchi method
  publication-title: Int J Innov Mech Eng Adv Mater
– volume: 25
  start-page: 1177
  year: 2016
  end-page: 1191
  article-title: Role of laser cladding parameters in composite coating (Al-SiC) on aluminum alloy
  publication-title: J Therm Spray Technol
– ident: bibr44-02670844241298946
  doi: 10.1007/s11042-020-10139-6
– ident: bibr8-02670844241298946
  doi: 10.3390/ma15165522
– ident: bibr27-02670844241298946
  doi: 10.1177/0036850419881883
– ident: bibr49-02670844241298946
  doi: 10.3390/su13063208
– ident: bibr61-02670844241298946
  doi: 10.1007/s12206-016-0831-0
– ident: bibr35-02670844241298946
  doi: 10.1080/01694243.2022.2159298
– volume: 5
  year: 2023
  ident: bibr42-02670844241298946
  publication-title: Eng Rep
– ident: bibr3-02670844241298946
  doi: 10.3390/ma14040781
– ident: bibr24-02670844241298946
  doi: 10.1155/2020/9176509
– ident: bibr10-02670844241298946
  doi: 10.1016/j.jmrt.2021.02.076
– ident: bibr58-02670844241298946
  doi: 10.1016/j.jksues.2021.03.002
– ident: bibr47-02670844241298946
– ident: bibr26-02670844241298946
  doi: 10.1109/ICIG.2009.115
– ident: bibr60-02670844241298946
  doi: 10.2139/ssrn.4091362
– ident: bibr19-02670844241298946
  doi: 10.1080/07408179208964244
– ident: bibr48-02670844241298946
  doi: 10.1109/4235.996017
– ident: bibr50-02670844241298946
  doi: 10.1088/2053-1591/aab7cb
– ident: bibr13-02670844241298946
  doi: 10.1179/1362171815Y.0000000044
– ident: bibr37-02670844241298946
  doi: 10.1007/s11277-017-5224-x
– ident: bibr51-02670844241298946
  doi: 10.3390/machines10040263
– ident: bibr23-02670844241298946
  doi: 10.1088/2631-8695/acc9fe
– ident: bibr4-02670844241298946
  doi: 10.2351/7.0001138
– ident: bibr12-02670844241298946
  doi: 10.1016/S0257-8972(96)03022-8
– start-page: 3375
  volume-title: International conference on machine learning
  year: 2018
  ident: bibr31-02670844241298946
– volume: 3
  start-page: 270
  year: 2012
  ident: bibr59-02670844241298946
  publication-title: Int J Adv Eng Technol
– ident: bibr7-02670844241298946
  doi: 10.1243/09544062JMES1782
– ident: bibr9-02670844241298946
  doi: 10.1007/s00170-014-6338-x
– ident: bibr6-02670844241298946
– ident: bibr43-02670844241298946
  doi: 10.1023/A:1022602019183
– ident: bibr55-02670844241298946
  doi: 10.1109/RAECS.2015.7453288
– volume: 44
  start-page: 1012
  year: 2011
  ident: bibr54-02670844241298946
  publication-title: Appl Mech Mater
– start-page: 964
  volume-title: Proceedings of the Korean institute of intelligent systems conference
  year: 1993
  ident: bibr56-02670844241298946
– ident: bibr53-02670844241298946
  doi: 10.1088/2051-672X/aca3bd
– ident: bibr21-02670844241298946
  doi: 10.1016/j.optlastec.2021.107246
– volume: 8
  start-page: 12
  year: 2022
  ident: bibr39-02670844241298946
  publication-title: Asian J Converg Technol (AJCT) ISSN-2350-1146
– ident: bibr25-02670844241298946
– ident: bibr36-02670844241298946
  doi: 10.2351/7.0001108
– ident: bibr16-02670844241298946
  doi: 10.1016/j.phpro.2013.11.058
– volume: 1
  start-page: 1
  year: 2012
  ident: bibr18-02670844241298946
  publication-title: Int J Eng Math Sci
– start-page: 012085
  volume-title: IOP Conference series: materials science and engineering
  year: 2018
  ident: bibr38-02670844241298946
– ident: bibr34-02670844241298946
  doi: 10.1109/TAP.2023.3281667
– ident: bibr28-02670844241298946
  doi: 10.2351/1.5096126
– ident: bibr45-02670844241298946
  doi: 10.1111/j.1747-1567.2011.00803.x
– ident: bibr57-02670844241298946
  doi: 10.1007/s10845-020-01725-4
– ident: bibr14-02670844241298946
  doi: 10.1007/s00170-012-4688-9
– ident: bibr40-02670844241298946
  doi: 10.3390/s22207955
– volume: 1
  issue: 2
  year: 2019
  ident: bibr29-02670844241298946
  publication-title: Mech Eng Sci
– volume: 18
  start-page: 2715
  year: 2021
  ident: bibr33-02670844241298946
  publication-title: PalArch’s J Archaeol Egypt/Egyptol
– ident: bibr1-02670844241298946
  doi: 10.1016/j.optlastec.2021.106915
– ident: bibr20-02670844241298946
  doi: 10.22441/ijimeam.v5i2.21679
– ident: bibr11-02670844241298946
  doi: 10.22616/ERDev2017.16.N242
– ident: bibr15-02670844241298946
  doi: 10.1007/s10845-012-0682-1
– ident: bibr30-02670844241298946
  doi: 10.2351/1.5061649
– ident: bibr52-02670844241298946
  doi: 10.1007/s10462-023-10466-8
– ident: bibr17-02670844241298946
  doi: 10.1080/09276440.2024.2331333
– ident: bibr46-02670844241298946
  doi: 10.1016/j.proeng.2011.08.745
– ident: bibr5-02670844241298946
  doi: 10.1016/j.surfcoat.2023.129988
– ident: bibr22-02670844241298946
  doi: 10.1007/s11666-016-0431-7
– ident: bibr32-02670844241298946
  doi: 10.1109/ICCNEA53019.2021.00014
– ident: bibr41-02670844241298946
  doi: 10.17222/mit.2019.263
– ident: bibr2-02670844241298946
  doi: 10.3390/app10093167
SSID ssj0021785
Score 2.349586
SecondaryResourceType review_article
Snippet As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 933
Title Algorithmic research on surface roughness in laser-melted claddings: A review
URI https://journals.sagepub.com/doi/full/10.1177/02670844241298946
Volume 40
WOSCitedRecordID wos001362430300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1743-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021785
  issn: 0267-0844
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoEeEE_RUpAPSEigVBvHG9u9rYCKCxWHRa24rOzY3galTpXdrfor-M34FW-6PFQOXKLVZOxoPV8mY8_4MwCvpWSEF4hmpcp5hjGnGddKZEjJSnKCRSGkP2yCnJzQszP2ZTT60e-FuWqIMfT6ml3-V1NbmTW22zr7D-ZOnVqB_W2Nbq_W7PZ6K8NPm0VrZ_znF56cOa5qWBsv153mlasnXC_OvYOrzTsbO6suu1CNCzyrxlUXmcUybFfvNmmD7_22kdCF2pAYDhae25i-N4umvXEjuJNvtVVJTmYdRBtcffCSU1WnxnEtAuFUbDVMgv1-uRFZhzymgevxUAVn6-hREYuy6I0DeVNEHctizWvwrixwZsQPdWz46zfAZ6HdA93zbITiSea3-LbjBOgwcJ1v694BdxGZMOclZ8enaQKfE3_Ea_ovMUvuCby2u7gR5wyKBH3cMnsIHsQJB5wGoDwCI2Ueg90BDeUT8HkAGdhDBrYGRsjABBlYGziEDEyQOYJTGADzFHw9_jh7_ymLx2xkFaLlKqOSUJFTwm1kqyQXSrCSSyElokJgXUxyKjiRUgtMMCsJQ-OqVFiPtSwU1bR4BnZMa9RzAEtu321H8aaJxqyy9yirJjbkLjUuKSv3wLgflHkVOejdUSjNPO9p57fHcQ-8TU0uAwHL35TfuJGex9dx-WfN_VtrvgD3N1A_ADurbq1egnvV1apedq88QH4CgkOCeQ
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+research+on+surface+roughness+in+laser-melted+claddings%3A+A+review&rft.jtitle=Surface+engineering&rft.au=Zhao%2C+Changlong&rft.au=Zhang%2C+Zihao&rft.au=Yu%2C+Zice&rft.au=Du%2C+Weilong&rft.date=2024-09-01&rft.pub=SAGE+Publications&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=40&rft.issue=9-10&rft.spage=933&rft.epage=944&rft_id=info:doi/10.1177%2F02670844241298946&rft.externalDocID=10.1177_02670844241298946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon