Algorithmic research on surface roughness in laser-melted claddings: A review
As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, wit...
Gespeichert in:
| Veröffentlicht in: | Surface engineering Jg. 40; H. 9-10; S. 933 - 944 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London, England
SAGE Publications
01.09.2024
|
| Schlagworte: | |
| ISSN: | 0267-0844, 1743-2944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, with a particular focus on refining its surface roughness, it has emerged as a significant area of interest among numerous investigators. This paper reviews a variety of methods for optimizing the surface roughness of laser cladding, covering from deterministic algorithms such as Taguchi's method, orthogonal experimental method, gradient descent method, to stochastic algorithms including neural network, genetic algorithm, Gray Wolf algorithm, and even hybrid algorithms combining multiple algorithms like neural network genetic algorithm, adaptive neural fuzzy reasoning algorithm, and improved genetic algorithms for response surface analysis, and so on. Through comparative analysis, it is found that the hybrid algorithms can quickly generate the optimal optimization parameters for the sake of achieving the optimal surface quality since they may combine the accuracy of deterministic algorithms and the robustness of stochastic algorithms. In addition, this paper also looks forward to the future development direction of surface quality optimization methods for laser cladding, aiming at laying a foundation for the research work of high-quality coating preparation. |
|---|---|
| AbstractList | As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But the surface characteristics of the cladding layer are not frequently aligned with the standards necessary for industrial use. Consequently, with a particular focus on refining its surface roughness, it has emerged as a significant area of interest among numerous investigators. This paper reviews a variety of methods for optimizing the surface roughness of laser cladding, covering from deterministic algorithms such as Taguchi's method, orthogonal experimental method, gradient descent method, to stochastic algorithms including neural network, genetic algorithm, Gray Wolf algorithm, and even hybrid algorithms combining multiple algorithms like neural network genetic algorithm, adaptive neural fuzzy reasoning algorithm, and improved genetic algorithms for response surface analysis, and so on. Through comparative analysis, it is found that the hybrid algorithms can quickly generate the optimal optimization parameters for the sake of achieving the optimal surface quality since they may combine the accuracy of deterministic algorithms and the robustness of stochastic algorithms. In addition, this paper also looks forward to the future development direction of surface quality optimization methods for laser cladding, aiming at laying a foundation for the research work of high-quality coating preparation. |
| Author | Zhao, Changlong Du, Weilong Zhang, Zihao Yu, Zice |
| Author_xml | – sequence: 1 givenname: Changlong orcidid: 0000-0003-2906-2486 surname: Zhao fullname: Zhao, Changlong organization: College of Mechanical and Vehicle Engineering – sequence: 2 givenname: Zihao surname: Zhang fullname: Zhang, Zihao organization: College of Mechanical and Vehicle Engineering – sequence: 3 givenname: Zice surname: Yu fullname: Yu, Zice organization: College of Mechanical and Vehicle Engineering – sequence: 4 givenname: Weilong surname: Du fullname: Du, Weilong organization: College of Mechanical and Vehicle Engineering |
| BookMark | eNp90M9KAzEQBvAgFWyrD-AtL7A1yaabxFspaoWKFz0v-TPZpmwTSbaKb29LPSn0NIeZ3wfzTdAopggI3VIyo1SIO8IaQSTnjFOmpOLNBRpTweuKKc5HaHzcV8eDKzQpZUsIo0LOx-hl0Xcph2GzCxZnKKCz3eAUcdlnry3gnPbdJkIpOETc6wK52kE_gMO2186F2JV7vDjQzwBf1-jS677Aze-covfHh7flqlq_Pj0vF-vKMtkMlXRCGiqFpnMFThswqtHOOMekMdzXcyqNFs55wwVXjVCM2Aa4J97VIL2sp4iecm1OpWTw7UcOO52_W0raYx_tvz4ORvwxNgx6CCkOWYf-rJydZNEdtNu0z_Hw3BnwA4WedFs |
| CitedBy_id | crossref_primary_10_1016_j_surfcoat_2025_132457 |
| Cites_doi | 10.1007/s11042-020-10139-6 10.3390/ma15165522 10.1177/0036850419881883 10.3390/su13063208 10.1007/s12206-016-0831-0 10.1080/01694243.2022.2159298 10.3390/ma14040781 10.1155/2020/9176509 10.1016/j.jmrt.2021.02.076 10.1016/j.jksues.2021.03.002 10.1109/ICIG.2009.115 10.2139/ssrn.4091362 10.1080/07408179208964244 10.1109/4235.996017 10.1088/2053-1591/aab7cb 10.1179/1362171815Y.0000000044 10.1007/s11277-017-5224-x 10.3390/machines10040263 10.1088/2631-8695/acc9fe 10.2351/7.0001138 10.1016/S0257-8972(96)03022-8 10.1243/09544062JMES1782 10.1007/s00170-014-6338-x 10.1023/A:1022602019183 10.1109/RAECS.2015.7453288 10.1088/2051-672X/aca3bd 10.1016/j.optlastec.2021.107246 10.2351/7.0001108 10.1016/j.phpro.2013.11.058 10.1109/TAP.2023.3281667 10.2351/1.5096126 10.1111/j.1747-1567.2011.00803.x 10.1007/s10845-020-01725-4 10.1007/s00170-012-4688-9 10.3390/s22207955 10.1016/j.optlastec.2021.106915 10.22441/ijimeam.v5i2.21679 10.22616/ERDev2017.16.N242 10.1007/s10845-012-0682-1 10.2351/1.5061649 10.1007/s10462-023-10466-8 10.1080/09276440.2024.2331333 10.1016/j.proeng.2011.08.745 10.1016/j.surfcoat.2023.129988 10.1007/s11666-016-0431-7 10.1109/ICCNEA53019.2021.00014 10.17222/mit.2019.263 10.3390/app10093167 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 |
| Copyright_xml | – notice: The Author(s) 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1177/02670844241298946 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1743-2944 |
| EndPage | 944 |
| ExternalDocumentID | 10_1177_02670844241298946 10.1177_02670844241298946 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jilin Province grantid: 20240101088JC funderid: https://doi.org/10.13039/100007847 |
| GroupedDBID | 002 0R~ 123 1~B 29Q 4.4 8WZ A6W AAGLT AAJMT AAQXI AATAA ABCCY ABDBF ABFIM ABJNI ABKLS ABPNF ABRHV ABUJY ABUNW ABXYU ACFOO ACGFS ACOXC ACTIO ACTTO ACUHS ACUIR ACVGN ADCVX ADEBD ADGTB ADUKL ADUMR ADVBO ADXEU ADYCX AEAXR AEHZU AENEX AEXNY AEYOC AEZBV AFION AGDLA AGKLV AGVKY AGWUF AHDMH AIJEM AKHJE AKOOK ALKDR ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR ALXIB AMATQ AQRUH ARTOV AWYRJ BGSSV BLEHA BPACV BWMZZ CCCUG CS3 CYRSC DAOYK DGEBU DKSSO DU5 E01 EBS EJD FETWF FHBDP H13 HCLVR HZ~ IFELN IPNFZ J8X KYCEM LJTGL M46 M4Z MV1 NUSFT O9- OPCYK P2P P75 P7B Q1R RIG SAUOL SCNPE SFC TAJZE TDBHL TFL TFW TTHFI ZE2 AAEJI AAPII AAYXX ABUAX AJGYC AJVBE CITATION |
| ID | FETCH-LOGICAL-c286t-8d78b187a159edabeb96adbdd28bb4f3518ba7ddfb474967920c6e4f0fd3e8f83 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362430300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0267-0844 |
| IngestDate | Sat Nov 29 08:11:09 EST 2025 Tue Nov 18 22:36:29 EST 2025 Tue Jun 17 22:30:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-10 |
| Keywords | hybrid algorithm stochastic algorithm deterministic algorithm surface roughness laser cladding technology |
| Language | English |
| License | https://journals.sagepub.com/page/policies/text-and-data-mining-license |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-8d78b187a159edabeb96adbdd28bb4f3518ba7ddfb474967920c6e4f0fd3e8f83 |
| ORCID | 0000-0003-2906-2486 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1177_02670844241298946 crossref_citationtrail_10_1177_02670844241298946 sage_journals_10_1177_02670844241298946 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England |
| PublicationTitle | Surface engineering |
| PublicationYear | 2024 |
| Publisher | SAGE Publications |
| Publisher_xml | – name: SAGE Publications |
| References | Zhu, Xue, Lan 2021; 138 Li, Lin, Liu 2021; 13 Zhang, Gong, Tang 2022; 10 Balan, Shivasankaran, Magibalan 2018; 5 Haji, Abdulazeez 2021; 18 Cheng, Xing, Dong 2022; 15 Lian, Zhao, Zhang 2020; 10 Riquelme, Escalera-Rodriguez, Rodrigo 2016; 25 Quan, Guo, Li 2020; 103 Li, Ma 1997; 90 Guo, Chen, Cai 2013; 50 So, Seo, Kim 2022; 22 Deb, Pratap, Agarwal 2002; 6 Yusoff, Ngadiman, Zain 2011; 15 Xia, Pan, Polden 2022; 33 Li, Jia, Han 2023; 37 Toma, Hillig, Kaubisch 2023; 35 Prakash, Kansal, Pabla 2016; 30 Paulus, Ruppert, Vielhaber 2023; 35 Župerl, Irgolič, Kovačič 2020; 54 Xu, Wu, Hong 2011; 44 Marzban, Ghaseminejad, Ahmadzadeh 2015; 76 Zhao, Sun, Guo 2019; 31 Zhang, Xu, Sun 2022; 10 Budhu, Grbic 2023; 71 Murmu, Parida, Das 2023; 473 Karna, Sahai 2012; 1 Cao, Li, Hu 2021; 142 Thorat, Pandit, Balote 2022; 8 Qian, Dai, Guo 2021; 14 Zhong, Liu 2010; 224 Katoch, Chauhan, Kumar 2021; 80 Linsen, Bo, Yayin 2019; 1 Janardhan, Krishna 2012; 3 Yang, Lai, Yue 2020; 2020 Du, He, Zhou 2023; 5 Wu, Feng 2018; 102 Tanigawa, Abe, Tsukamoto 2015; 20 Ahmed, Alam, Hassan 2023; 56 Tsui 1992; 24 Zhang, Shen, Wang 2021; 12 Zhao, Jia, Zhao 2024; 31 La Fé-Perdomo, Ramos-Grez, Mujica 2023; 35 Putra, Timuda, Darsono 2023; 5 Calignano, Manfredi, Ambrosio 2013; 67 Yoganandh, Kannan, Kumaresh Babu 2013; 37 Zhang, Luo, Ma 2023; 5 Goldberg, Holland 1988; 3 Xiong, Zhang, Hu 2014; 25 bibr55-02670844241298946 Janardhan M (bibr59-02670844241298946) 2012; 3 bibr48-02670844241298946 bibr35-02670844241298946 bibr22-02670844241298946 bibr28-02670844241298946 bibr15-02670844241298946 bibr5-02670844241298946 Zhang W (bibr42-02670844241298946) 2023; 5 bibr43-02670844241298946 bibr50-02670844241298946 bibr30-02670844241298946 bibr9-02670844241298946 bibr36-02670844241298946 bibr19-02670844241298946 Paturi UMR (bibr38-02670844241298946) 2018 bibr49-02670844241298946 bibr16-02670844241298946 bibr61-02670844241298946 bibr26-02670844241298946 bibr51-02670844241298946 Fukuda T (bibr56-02670844241298946) 1993 bibr10-02670844241298946 bibr8-02670844241298946 bibr11-02670844241298946 bibr27-02670844241298946 bibr57-02670844241298946 bibr37-02670844241298946 bibr47-02670844241298946 bibr17-02670844241298946 bibr41-02670844241298946 bibr21-02670844241298946 Mackey L (bibr31-02670844241298946) 2018 bibr1-02670844241298946 bibr32-02670844241298946 Thorat M (bibr39-02670844241298946) 2022; 8 bibr45-02670844241298946 bibr7-02670844241298946 bibr58-02670844241298946 Haji SH (bibr33-02670844241298946) 2021; 18 Linsen S (bibr29-02670844241298946) 2019; 1 bibr12-02670844241298946 bibr25-02670844241298946 bibr52-02670844241298946 bibr40-02670844241298946 bibr2-02670844241298946 bibr53-02670844241298946 bibr60-02670844241298946 bibr20-02670844241298946 bibr46-02670844241298946 bibr6-02670844241298946 bibr23-02670844241298946 bibr3-02670844241298946 bibr13-02670844241298946 Karna SK (bibr18-02670844241298946) 2012; 1 bibr24-02670844241298946 bibr34-02670844241298946 bibr14-02670844241298946 Xu ZM (bibr54-02670844241298946) 2011; 44 bibr44-02670844241298946 bibr4-02670844241298946 |
| References_xml | – volume: 1 start-page: 1 year: 2012 end-page: 7 article-title: An overview on Taguchi method publication-title: Int J Eng Math Sci – volume: 35 start-page: 042034 year: 2023 article-title: Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches publication-title: J Laser Appl – volume: 44 start-page: 1012 year: 2011 end-page: 1017 article-title: Quality prediction of laser cladding based on evolutionary neural network publication-title: Appl Mech Mater – volume: 10 start-page: 263 year: 2022 article-title: Application of a bio-inspired algorithm in the process parameter optimization of laser cladding publication-title: Machines – volume: 35 start-page: 042047 year: 2023 article-title: Latest developments in coaxial multiwire high-power laser cladding publication-title: J Laser Appl – volume: 50 start-page: 375 year: 2013 end-page: 382 article-title: Prediction of simulating and experiments for co-based alloy laser cladding by HPDL publication-title: Phys Procedia – volume: 6 start-page: 182 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 10 start-page: 3167 year: 2020 article-title: Investigation into micro-hardness and wear resistance of 316L/SiC composite coating in laser cladding publication-title: Appl Sci – volume: 102 start-page: 1645 year: 2018 end-page: 1656 article-title: Development and application of artificial neural network publication-title: Wirel Pers Commun – volume: 24 start-page: 44 year: 1992 end-page: 57 article-title: An overview of Taguchi method and newly developed statistical methods for robust design publication-title: Iie Trans – volume: 90 start-page: 1 year: 1997 end-page: 5 article-title: Study on overlapping in the laser cladding process publication-title: Surf Coat Technol – volume: 80 start-page: 8091 year: 2021 end-page: 8126 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed Tools Appl – volume: 18 start-page: 2715 year: 2021 end-page: 2743 article-title: Comparison of optimization techniques based on gradient descent algorithm: a review publication-title: PalArch’s J Archaeol Egypt/Egyptol – volume: 56 start-page: 13521 year: 2023 end-page: 13617 article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges publication-title: Artif Intell Rev – volume: 3 start-page: 270 year: 2012 article-title: Multi-objective optimization of cutting parameters for surface roughness and metal removal rate in surface grinding using response surface methodology publication-title: Int J Adv Eng Technol – volume: 10 start-page: 044007 year: 2022 article-title: Surface quality optimization of laser cladding based on surface response and genetic neural network model publication-title: Surf Topogr: Metrol Prop – volume: 71 start-page: 7679 year: 2023 end-page: 7683 article-title: Fast and accurate optimization of metasurfaces with gradient descent and the woodbury matrix identity publication-title: IEEE Trans Antennas Propag – volume: 35 start-page: 148 year: 2023 end-page: 156 article-title: Surface roughness Ra prediction in selective Laser melting of 316L stainless steel by means of artificial intelligence inference publication-title: J King Saud Univ-Eng Sci – volume: 224 start-page: 1041 year: 2010 end-page: 1060 article-title: Laser surface cladding: the state of the art and challenges publication-title: Proc Inst Mech Eng Part C: J Mech Eng Sci – volume: 13 start-page: 3208 year: 2021 article-title: An improved gray wolf optimization algorithm to solve engineering problems publication-title: Sustainability – volume: 15 start-page: 3978 year: 2011 end-page: 3983 article-title: Overview of NSGA-II for optimizing machining process parameters publication-title: Procedia Eng – volume: 473 start-page: 129988 year: 2023 article-title: Evaluation of laser cladding of Ti6Al4V-ZrO2-CeO2 composite coating on Ti6Al4V alloy substrate publication-title: Surf Coat Technol – volume: 76 start-page: 1163 year: 2015 end-page: 1172 article-title: Experimental investigation and statistical optimization of laser surface cladding parameters publication-title: Int J Adv Manuf Technol – volume: 37 start-page: 48 year: 2013 end-page: 58 article-title: Optimization of GMAW process parameters in austenitic stainless steel cladding using genetic algorithm based computational models publication-title: Exp Tech – volume: 8 start-page: 12 year: 2022 end-page: 16 article-title: Artificial neural network: a brief study publication-title: Asian J Converg Technol (AJCT) ISSN-2350-1146 – volume: 31 start-page: 022512 year: 2019 article-title: Investigation on the effect of laser remelting for laser cladding nickel based alloy publication-title: J Laser Appl – volume: 14 start-page: 781 year: 2021 article-title: Microstructure and wear resistance of multi-layer Ni-based alloy cladding coating on 316L SS under different laser power publication-title: Materials – volume: 67 start-page: 2743 year: 2013 end-page: 2751 article-title: Influence of process parameters on surface roughness of aluminum parts produced by DMLS publication-title: Int J Adv Manuf Technol – volume: 25 start-page: 157 year: 2014 end-page: 163 article-title: Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis publication-title: J Intell Manuf – volume: 31 start-page: 1 year: 2024 end-page: 22 article-title: Research progress on the effect of surface texture on the friction properties of CoCrMo alloys publication-title: Compos Interfaces – volume: 20 start-page: 601 year: 2015 end-page: 606 article-title: Effect of laser path overlap on surface roughness and hardness of layer in laser cladding publication-title: Sci Technol Weld Join – volume: 22 start-page: 7955 year: 2022 article-title: Prediction of metal additively manufactured surface roughness using deep neural network publication-title: Sensors – volume: 37 start-page: 2556 year: 2023 end-page: 2586 article-title: Study on parameter optimization of laser cladding Fe60 based on GA-BP neural network publication-title: J Adhes Sci Technol – volume: 5 start-page: 046527 year: 2018 article-title: Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm publication-title: Mater Res Exp – volume: 142 start-page: 107246 year: 2021 article-title: Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing publication-title: Opt Laser Technol – volume: 3 start-page: 95 year: 1988 end-page: 99 article-title: Genetic algorithms and machine learning publication-title: Mach Learn – volume: 30 start-page: 4195 year: 2016 end-page: 4204 article-title: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology publication-title: J Mech Sci Technol – volume: 54 start-page: 747 year: 2020 end-page: 753 article-title: Minimum depth of milling to obtain the desired surface roughness in multi-layer materials publication-title: Mater Technol/Materiali in Tehnologije – volume: 138 start-page: 106915 year: 2021 article-title: Recent research and development status of laser cladding: a review publication-title: Opt Laser Technol – volume: 103 start-page: 0036850419881883 year: 2020 article-title: Optimization design and experimental study of vortex pump based on orthogonal test publication-title: Sci Prog – volume: 1 issue: 2 year: 2019 article-title: Optimization of process parameters of laser cladding 304L alloy powder based on orthogonal experiment publication-title: Mech Eng Sci – volume: 5 year: 2023 article-title: Prediction model of surface roughness of selective laser melting formed parts based on back propagation neural network publication-title: Eng Rep – volume: 12 start-page: 100 year: 2021 end-page: 116 article-title: Improving surface properties of fe-based laser cladding coating deposited on a carbon steel by heat assisted ultrasonic burnishing publication-title: J Mater Res Technol – volume: 2020 start-page: 9176509 year: 2020 article-title: Parametric optimization of laser additive manufacturing of Inconel 625 using Taguchi method and grey relational analysis publication-title: Scanning – volume: 15 start-page: 5522 year: 2022 article-title: An overview of laser metal deposition for cladding: defect formation mechanisms, defect suppression methods and performance improvements of laser-cladded layers publication-title: Materials – volume: 5 start-page: 025015 year: 2023 article-title: Multi-objective optimization of process parameters of laser cladding 15-5PH alloy powder based on gray-fuzzy taguchi approach publication-title: Eng Res Exp – volume: 33 start-page: 1467 year: 2022 end-page: 1482 article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning publication-title: J Intell Manuf – volume: 5 start-page: 56 year: 2023 end-page: 62 article-title: Optimization of machining parameters on the surface roughness of aluminum in cnc turning process using taguchi method publication-title: Int J Innov Mech Eng Adv Mater – volume: 25 start-page: 1177 year: 2016 end-page: 1191 article-title: Role of laser cladding parameters in composite coating (Al-SiC) on aluminum alloy publication-title: J Therm Spray Technol – ident: bibr44-02670844241298946 doi: 10.1007/s11042-020-10139-6 – ident: bibr8-02670844241298946 doi: 10.3390/ma15165522 – ident: bibr27-02670844241298946 doi: 10.1177/0036850419881883 – ident: bibr49-02670844241298946 doi: 10.3390/su13063208 – ident: bibr61-02670844241298946 doi: 10.1007/s12206-016-0831-0 – ident: bibr35-02670844241298946 doi: 10.1080/01694243.2022.2159298 – volume: 5 year: 2023 ident: bibr42-02670844241298946 publication-title: Eng Rep – ident: bibr3-02670844241298946 doi: 10.3390/ma14040781 – ident: bibr24-02670844241298946 doi: 10.1155/2020/9176509 – ident: bibr10-02670844241298946 doi: 10.1016/j.jmrt.2021.02.076 – ident: bibr58-02670844241298946 doi: 10.1016/j.jksues.2021.03.002 – ident: bibr47-02670844241298946 – ident: bibr26-02670844241298946 doi: 10.1109/ICIG.2009.115 – ident: bibr60-02670844241298946 doi: 10.2139/ssrn.4091362 – ident: bibr19-02670844241298946 doi: 10.1080/07408179208964244 – ident: bibr48-02670844241298946 doi: 10.1109/4235.996017 – ident: bibr50-02670844241298946 doi: 10.1088/2053-1591/aab7cb – ident: bibr13-02670844241298946 doi: 10.1179/1362171815Y.0000000044 – ident: bibr37-02670844241298946 doi: 10.1007/s11277-017-5224-x – ident: bibr51-02670844241298946 doi: 10.3390/machines10040263 – ident: bibr23-02670844241298946 doi: 10.1088/2631-8695/acc9fe – ident: bibr4-02670844241298946 doi: 10.2351/7.0001138 – ident: bibr12-02670844241298946 doi: 10.1016/S0257-8972(96)03022-8 – start-page: 3375 volume-title: International conference on machine learning year: 2018 ident: bibr31-02670844241298946 – volume: 3 start-page: 270 year: 2012 ident: bibr59-02670844241298946 publication-title: Int J Adv Eng Technol – ident: bibr7-02670844241298946 doi: 10.1243/09544062JMES1782 – ident: bibr9-02670844241298946 doi: 10.1007/s00170-014-6338-x – ident: bibr6-02670844241298946 – ident: bibr43-02670844241298946 doi: 10.1023/A:1022602019183 – ident: bibr55-02670844241298946 doi: 10.1109/RAECS.2015.7453288 – volume: 44 start-page: 1012 year: 2011 ident: bibr54-02670844241298946 publication-title: Appl Mech Mater – start-page: 964 volume-title: Proceedings of the Korean institute of intelligent systems conference year: 1993 ident: bibr56-02670844241298946 – ident: bibr53-02670844241298946 doi: 10.1088/2051-672X/aca3bd – ident: bibr21-02670844241298946 doi: 10.1016/j.optlastec.2021.107246 – volume: 8 start-page: 12 year: 2022 ident: bibr39-02670844241298946 publication-title: Asian J Converg Technol (AJCT) ISSN-2350-1146 – ident: bibr25-02670844241298946 – ident: bibr36-02670844241298946 doi: 10.2351/7.0001108 – ident: bibr16-02670844241298946 doi: 10.1016/j.phpro.2013.11.058 – volume: 1 start-page: 1 year: 2012 ident: bibr18-02670844241298946 publication-title: Int J Eng Math Sci – start-page: 012085 volume-title: IOP Conference series: materials science and engineering year: 2018 ident: bibr38-02670844241298946 – ident: bibr34-02670844241298946 doi: 10.1109/TAP.2023.3281667 – ident: bibr28-02670844241298946 doi: 10.2351/1.5096126 – ident: bibr45-02670844241298946 doi: 10.1111/j.1747-1567.2011.00803.x – ident: bibr57-02670844241298946 doi: 10.1007/s10845-020-01725-4 – ident: bibr14-02670844241298946 doi: 10.1007/s00170-012-4688-9 – ident: bibr40-02670844241298946 doi: 10.3390/s22207955 – volume: 1 issue: 2 year: 2019 ident: bibr29-02670844241298946 publication-title: Mech Eng Sci – volume: 18 start-page: 2715 year: 2021 ident: bibr33-02670844241298946 publication-title: PalArch’s J Archaeol Egypt/Egyptol – ident: bibr1-02670844241298946 doi: 10.1016/j.optlastec.2021.106915 – ident: bibr20-02670844241298946 doi: 10.22441/ijimeam.v5i2.21679 – ident: bibr11-02670844241298946 doi: 10.22616/ERDev2017.16.N242 – ident: bibr15-02670844241298946 doi: 10.1007/s10845-012-0682-1 – ident: bibr30-02670844241298946 doi: 10.2351/1.5061649 – ident: bibr52-02670844241298946 doi: 10.1007/s10462-023-10466-8 – ident: bibr17-02670844241298946 doi: 10.1080/09276440.2024.2331333 – ident: bibr46-02670844241298946 doi: 10.1016/j.proeng.2011.08.745 – ident: bibr5-02670844241298946 doi: 10.1016/j.surfcoat.2023.129988 – ident: bibr22-02670844241298946 doi: 10.1007/s11666-016-0431-7 – ident: bibr32-02670844241298946 doi: 10.1109/ICCNEA53019.2021.00014 – ident: bibr41-02670844241298946 doi: 10.17222/mit.2019.263 – ident: bibr2-02670844241298946 doi: 10.3390/app10093167 |
| SSID | ssj0021785 |
| Score | 2.349586 |
| SecondaryResourceType | review_article |
| Snippet | As a breakthrough of the additive manufacturing technology being achieved, many fields have broadly applied laser cladding due to its unique advantages. But... |
| SourceID | crossref sage |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 933 |
| Title | Algorithmic research on surface roughness in laser-melted claddings: A review |
| URI | https://journals.sagepub.com/doi/full/10.1177/02670844241298946 |
| Volume | 40 |
| WOSCitedRecordID | wos001362430300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1743-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021785 issn: 0267-0844 databaseCode: TFW dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoEeEE_RUpAPSEigVBvHG9u9rYCKCxWHRa24rOzY3galTpXdrfor-M34FW-6PFQOXKLVZOxoPV8mY8_4MwCvpWSEF4hmpcp5hjGnGddKZEjJSnKCRSGkP2yCnJzQszP2ZTT60e-FuWqIMfT6ml3-V1NbmTW22zr7D-ZOnVqB_W2Nbq_W7PZ6K8NPm0VrZ_znF56cOa5qWBsv153mlasnXC_OvYOrzTsbO6suu1CNCzyrxlUXmcUybFfvNmmD7_22kdCF2pAYDhae25i-N4umvXEjuJNvtVVJTmYdRBtcffCSU1WnxnEtAuFUbDVMgv1-uRFZhzymgevxUAVn6-hREYuy6I0DeVNEHctizWvwrixwZsQPdWz46zfAZ6HdA93zbITiSea3-LbjBOgwcJ1v694BdxGZMOclZ8enaQKfE3_Ea_ovMUvuCby2u7gR5wyKBH3cMnsIHsQJB5wGoDwCI2Ueg90BDeUT8HkAGdhDBrYGRsjABBlYGziEDEyQOYJTGADzFHw9_jh7_ymLx2xkFaLlKqOSUJFTwm1kqyQXSrCSSyElokJgXUxyKjiRUgtMMCsJQ-OqVFiPtSwU1bR4BnZMa9RzAEtu321H8aaJxqyy9yirJjbkLjUuKSv3wLgflHkVOejdUSjNPO9p57fHcQ-8TU0uAwHL35TfuJGex9dx-WfN_VtrvgD3N1A_ADurbq1egnvV1apedq88QH4CgkOCeQ |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+research+on+surface+roughness+in+laser-melted+claddings%3A+A+review&rft.jtitle=Surface+engineering&rft.au=Zhao%2C+Changlong&rft.au=Zhang%2C+Zihao&rft.au=Yu%2C+Zice&rft.au=Du%2C+Weilong&rft.date=2024-09-01&rft.pub=SAGE+Publications&rft.issn=0267-0844&rft.eissn=1743-2944&rft.volume=40&rft.issue=9-10&rft.spage=933&rft.epage=944&rft_id=info:doi/10.1177%2F02670844241298946&rft.externalDocID=10.1177_02670844241298946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-0844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-0844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-0844&client=summon |