Construction of an endgame rulebook for Sylver Coinage using trees of numerical semigroups
In this paper we show how the algorithms to explore the tree of numerical semigroups can be used to calculate the winningness of positions in the game of Sylver Coinage. We introduce a new invariant for numerical semigroups, the minimal distance, and show how it can be used to prune the tree of nume...
Uloženo v:
| Vydáno v: | Communications in algebra Ročník 53; číslo 10; s. 4053 - 4062 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
03.10.2025
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0092-7872, 1532-4125 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we show how the algorithms to explore the tree of numerical semigroups can be used to calculate the winningness of positions in the game of Sylver Coinage. We introduce a new invariant for numerical semigroups, the minimal distance, and show how it can be used to prune the tree of numerical semigroups for an efficient way of calculating the winningness of positions in the game of Sylver Coinage. We end with a few open questions that were spawned as a result of this research. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0092-7872 1532-4125 |
| DOI: | 10.1080/00927872.2025.2456089 |