Construction of an endgame rulebook for Sylver Coinage using trees of numerical semigroups

In this paper we show how the algorithms to explore the tree of numerical semigroups can be used to calculate the winningness of positions in the game of Sylver Coinage. We introduce a new invariant for numerical semigroups, the minimal distance, and show how it can be used to prune the tree of nume...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in algebra Ročník 53; číslo 10; s. 4053 - 4062
Hlavní autoři: Bras-Amorós, Maria, Moskowitz, Gilad, Ponomarenko, Vadim
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.10.2025
Taylor & Francis Ltd
Témata:
ISSN:0092-7872, 1532-4125
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we show how the algorithms to explore the tree of numerical semigroups can be used to calculate the winningness of positions in the game of Sylver Coinage. We introduce a new invariant for numerical semigroups, the minimal distance, and show how it can be used to prune the tree of numerical semigroups for an efficient way of calculating the winningness of positions in the game of Sylver Coinage. We end with a few open questions that were spawned as a result of this research.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0092-7872
1532-4125
DOI:10.1080/00927872.2025.2456089