Finite Matrix Groups over Nilpotent Group Rings

We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion of Γ. We prove that all abelianp-subgroups ofSGLn(ZΓ) can be stably diagonalized. Also, all finite subgroups ofSGLn(ZΓ) can be embedded into...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebra Ročník 181; číslo 2; s. 565 - 583
Hlavní autoři: Marciniak, Zbigniew S., Sehgal, Sudarshan K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.04.1996
ISSN:0021-8693, 1090-266X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion of Γ. We prove that all abelianp-subgroups ofSGLn(ZΓ) can be stably diagonalized. Also, all finite subgroups ofSGLn(ZΓ) can be embedded into the diagonal Γn<SGLn(ZΓ). We apply matrix results to show that if Γ is nilpotent-by-(Π′-finite) then all finite Π-groups of normalized units in ZΓ can be embedded into Γ.
AbstractList We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion of Γ. We prove that all abelianp-subgroups ofSGLn(ZΓ) can be stably diagonalized. Also, all finite subgroups ofSGLn(ZΓ) can be embedded into the diagonal Γn<SGLn(ZΓ). We apply matrix results to show that if Γ is nilpotent-by-(Π′-finite) then all finite Π-groups of normalized units in ZΓ can be embedded into Γ.
Author Sehgal, Sudarshan K.
Marciniak, Zbigniew S.
Author_xml – sequence: 1
  givenname: Zbigniew S.
  surname: Marciniak
  fullname: Marciniak, Zbigniew S.
  organization: Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097, Warsaw, Poland
– sequence: 2
  givenname: Sudarshan K.
  surname: Sehgal
  fullname: Sehgal, Sudarshan K.
  organization: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
BookMark eNp1z8FKAzEQgOEgFWyrV8_7Arudye5md49SbC1UBenBW0iTWUmpSUli0be3Sz0JPQ0MfDP8EzZy3hFj9wgFAojZTm1DgV0nCsCyumJjhA5yLsT7iI0BOOat6MobNolxB4BYV-2YzRbW2UTZs0rBfmfL4L8OMfNHCtmL3R98IpfO2-zNuo94y657tY909zenbLN43Myf8vXrcjV_WOeatyKdPpm6Mz020FKtEE1DnARBSaBwWxnOKzK6rbtt0xvggA3nqmyMgkFBOWXF-awOPsZAvTwE-6nCj0SQQ60cauVQK4faE6j-AW2TSta7FJTdX2btmdGp5WgpyKgtOU3GBtJJGm8v0V89fW5g
CitedBy_id crossref_primary_10_1006_jabr_1999_7989
crossref_primary_10_1515_jgth_2000_006
ContentType Journal Article
Copyright 1996 Academic Press
Copyright_xml – notice: 1996 Academic Press
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1006/jabr.1996.0134
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-266X
EndPage 583
ExternalDocumentID 10_1006_jabr_1996_0134
S0021869396901349
GroupedDBID --K
--M
--Z
-~X
.~1
0SF
186
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABJNI
ABLJU
ABMAC
ABTAH
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HVGLF
IHE
IXB
J1W
K-O
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
OAUVE
OK1
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
0R~
71M
9DU
9M8
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
G-2
GBLVA
HZ~
H~9
NHB
O9-
OHT
OZT
P-8
SEW
WUQ
X7L
XOL
~HD
ID FETCH-LOGICAL-c286t-86d59df1708e5a11d7e2e6e03e0a1b4d224edc859b7fd0201722a37da09df103
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1006_jabr_1996_0134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-8693
IngestDate Sat Nov 29 01:42:32 EST 2025
Tue Nov 18 21:44:08 EST 2025
Fri Feb 23 02:36:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-86d59df1708e5a11d7e2e6e03e0a1b4d224edc859b7fd0201722a37da09df103
OpenAccessLink https://dx.doi.org/10.1006/jabr.1996.0134
PageCount 19
ParticipantIDs crossref_primary_10_1006_jabr_1996_0134
crossref_citationtrail_10_1006_jabr_1996_0134
elsevier_sciencedirect_doi_10_1006_jabr_1996_0134
PublicationCentury 1900
PublicationDate 1996-04-15
PublicationDateYYYYMMDD 1996-04-15
PublicationDate_xml – month: 04
  year: 1996
  text: 1996-04-15
  day: 15
PublicationDecade 1990
PublicationTitle Journal of algebra
PublicationYear 1996
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0011548
Score 1.4544482
Snippet We study groups of matricesSGLn(ZΓ) of augmentation one over the integral group ring ZΓ of a nilpotent group Γ. We relate the torsion ofSGLn(ZΓ) to the torsion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 565
Title Finite Matrix Groups over Nilpotent Group Rings
URI https://dx.doi.org/10.1006/jabr.1996.0134
Volume 181
WOSCitedRecordID wos10_1006_jabr_1996_0134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-266X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011548
  issn: 0021-8693
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF3x0QMcqkKpoF_yoRIH5LBe2_txRBWoBYIqyCHqxfJ6NxAJmSgJVX5-ZzzOJgiQSiUuVrTy2vG-1dvn8ew8xr45IH1YN3SsMbUx88bFppQ2ltZUvuKpsL4pmX-uLi50v29-tS6dk8ZOQNW1ns3M6FWhhjYAG7fOvgDucFFogN8AOhwBdjj-E_AnQ5SRB12svT-j2NLkABM1AfXb0d0UP_5TCOoyRMkfq1O0_7DjwNldtByqh2XDnb_t8LrGDS9XnRCg8TfXjXUAMJGDd-UboI2zziKkQFnIWUybKinONd_r8iAVs0nm0JL8DDue6JIbHgvyIlzi02Rp4ogldszJFqJdaHNysHnE4cADjXeAHeNWStkBkZotVquQQ3jV-mmlBj210syssnWhcgPsvH7087h_Gj4m4VsZZfrQA8xrd3J5-PAuT2uTJb3Re8fetlBERwTwFlvx9Tbb7IYqu5P37JCgjgjqiKCOEOooQE2tUQP1DuudHPe-_4hbA4y4ElpO4c-63LhBorj2eZkkTnnhpeep52ViMwfyy7tK58aqgQPdD2JUlKlyJcdePP3A1uq72u-yiMvKWV0NXGZBtghrUKnl2cBpnwqu1B6L509eVG1xePQouS2orLUscKQKHKkCR2qP7YfzR1QW5dkzk_lAFq2oI7FWAN7P9Pn4H30-sY3FVP7M1qbje_-Fvan-TIeT8dd2SvwFZ8psDQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+Matrix+Groups+over+Nilpotent+Group+Rings&rft.jtitle=Journal+of+algebra&rft.au=Marciniak%2C+Zbigniew+S.&rft.au=Sehgal%2C+Sudarshan+K.&rft.date=1996-04-15&rft.pub=Elsevier+Inc&rft.issn=0021-8693&rft.eissn=1090-266X&rft.volume=181&rft.issue=2&rft.spage=565&rft.epage=583&rft_id=info:doi/10.1006%2Fjabr.1996.0134&rft.externalDocID=S0021869396901349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8693&client=summon