On the Complexity of the Preconditioned Conjugate Gradient Algorithm for Solving Toeplitz Systems with a Fisher--Hartwig Singularity

The Toeplitz matrix $T_n$ with generating function $f ( \omega ) = |1 - e ^{-i \omega}|^{-2d} h( \omega )$, where $d \in (-\frac{1}{2}, \frac{1}{2})\setminus \{0\}$ and $h(\omega)$ is positive, continuous on $[-\pi,\pi]$, and differentiable on $[-\pi,\pi]\setminus\{0\}$, has a Fisher--Hartwig singul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications Jg. 27; H. 3; S. 638 - 653
Hauptverfasser: Lu, Yi, Hurvich, Clifford M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2005
Schlagworte:
ISSN:0895-4798, 1095-7162
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Toeplitz matrix $T_n$ with generating function $f ( \omega ) = |1 - e ^{-i \omega}|^{-2d} h( \omega )$, where $d \in (-\frac{1}{2}, \frac{1}{2})\setminus \{0\}$ and $h(\omega)$ is positive, continuous on $[-\pi,\pi]$, and differentiable on $[-\pi,\pi]\setminus\{0\}$, has a Fisher--Hartwig singularity [M. E. Fisher and R. E. Hartwig (1968), Adv. Chem. Phys., 32, pp. 190--225]. The complexity of the preconditioned conjugate gradient (PCG) algorithm is known [R. H. Chan and M. Ng (1996), SIAM Rev., 38, pp. 427--482] to be $O(n\log n)$ for Toeplitz systems when $d = 0$. However, the effect on the PCG algorithm of the Fisher--Hartwig singularity in $T_n$ has not been explored in the literature. We show that the complexity of the conjugate gradient (CG) algorithm for solving $T_n x=b$ without any preconditioning grows asymptotically as $n^{1+|d|}\log (n)$. With T. Chan's optimal circulant preconditioner $C_n$ [T. Chan (1988), SIAM J. Sci. Statist. Comput., 9, pp. 766--771], the complexity of the PCG algorithm is $O(n\log^3(n))$.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0895-4798
1095-7162
DOI:10.1137/040612117