Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-$(L_r,L_r,1)$ Terms

We present a new necessary and sufficient condition for essential uniqueness of the decomposition of a third-order tensor in rank-$(L_r,L_r,1)$ terms. We derive a new deterministic technique for blind signal separation that relies on this decomposition. The method assumes that the signals can be mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications Jg. 32; H. 4; S. 1451 - 1474
1. Verfasser: De Lathauwer, Lieven
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.10.2011
Schlagworte:
ISSN:0895-4798, 1095-7162
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new necessary and sufficient condition for essential uniqueness of the decomposition of a third-order tensor in rank-$(L_r,L_r,1)$ terms. We derive a new deterministic technique for blind signal separation that relies on this decomposition. The method assumes that the signals can be modeled as linear combinations of exponentials or, more generally, as exponential polynomials. The results are illustrated by means of numerical experiments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0895-4798
1095-7162
DOI:10.1137/100805510