Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-$(L_r,L_r,1)$ Terms

We present a new necessary and sufficient condition for essential uniqueness of the decomposition of a third-order tensor in rank-$(L_r,L_r,1)$ terms. We derive a new deterministic technique for blind signal separation that relies on this decomposition. The method assumes that the signals can be mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on matrix analysis and applications Ročník 32; číslo 4; s. 1451 - 1474
Hlavní autor: De Lathauwer, Lieven
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.10.2011
Témata:
ISSN:0895-4798, 1095-7162
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new necessary and sufficient condition for essential uniqueness of the decomposition of a third-order tensor in rank-$(L_r,L_r,1)$ terms. We derive a new deterministic technique for blind signal separation that relies on this decomposition. The method assumes that the signals can be modeled as linear combinations of exponentials or, more generally, as exponential polynomials. The results are illustrated by means of numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0895-4798
1095-7162
DOI:10.1137/100805510