Exact algorithms for multi-module capacitated lot-sizing problem, and its generalizations with two-echelons and piecewise concave production costs

We study new generalizations of the classic capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IISE transactions Jg. ahead-of-print; H. ahead-of-print; S. 1 - 16
Hauptverfasser: Kulkarni, Kartik, Bansal, Manish
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 02.12.2023
Schlagworte:
ISSN:2472-5854, 2472-5862
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study new generalizations of the classic capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available modules (machines or vehicles) of different capacities. We refer to this problem as M ulti-module C apacitated L ot- S izing Problem without or with S ubcontracting, and denote it by MCLS or MCLS-S, respectively. These are NP-hard problems if n is a part of the input and polynomially solvable for n = 1. In this article we address an open question: Does there exist a polynomial time exact algorithm for solving the MCLS or MCLS-S with fixed ? We present exact fixed-parameter tractable (polynomial) algorithms that solve MCLS and MCLS-S in time for a given It generalizes algorithm of Atamtürk and Hochbaum [Management Science 47(8):1081-1100, 2001] for MCLS-S with n = 1. We also present exact algorithms for two-generalizations of the MCLS and MCLS-S: (a) a lot-sizing problem with piecewise concave production cost functions (denoted by LS-PC-S) that takes time, where m is the number of breakpoints in these functions, and (b) two-echelon MCLS that takes time. The former reduces run time of algorithm of Koca et al. [INFORMS J. on Computing 26(4):767-779, 2014] for LS-PC-S by 93.6%, and the latter generalizes algorithm of van Hoesel et al. [Management Science 51(11):1706-1719, 2005] for two-echelon MCLS with n = 1. We perform computational experiments to evaluate the efficiency of our algorithms for MCLS and LS-PC-S and their parallel computing implementation, in comparison to Gurobi 9.1. The results of these experiments show that our algorithms are computationally efficient and stable. Our algorithm for MCLS-S addresses another open question related to the existence of a polynomial time algorithm for optimizing a linear function over n-mixing set (a generalization of the well-known 1-mixing set).
AbstractList We study new generalizations of the classic capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available modules (machines or vehicles) of different capacities. We refer to this problem as M ulti-module C apacitated L ot- S izing Problem without or with S ubcontracting, and denote it by MCLS or MCLS-S, respectively. These are NP-hard problems if n is a part of the input and polynomially solvable for n = 1. In this article we address an open question: Does there exist a polynomial time exact algorithm for solving the MCLS or MCLS-S with fixed ? We present exact fixed-parameter tractable (polynomial) algorithms that solve MCLS and MCLS-S in time for a given It generalizes algorithm of Atamtürk and Hochbaum [Management Science 47(8):1081-1100, 2001] for MCLS-S with n = 1. We also present exact algorithms for two-generalizations of the MCLS and MCLS-S: (a) a lot-sizing problem with piecewise concave production cost functions (denoted by LS-PC-S) that takes time, where m is the number of breakpoints in these functions, and (b) two-echelon MCLS that takes time. The former reduces run time of algorithm of Koca et al. [INFORMS J. on Computing 26(4):767-779, 2014] for LS-PC-S by 93.6%, and the latter generalizes algorithm of van Hoesel et al. [Management Science 51(11):1706-1719, 2005] for two-echelon MCLS with n = 1. We perform computational experiments to evaluate the efficiency of our algorithms for MCLS and LS-PC-S and their parallel computing implementation, in comparison to Gurobi 9.1. The results of these experiments show that our algorithms are computationally efficient and stable. Our algorithm for MCLS-S addresses another open question related to the existence of a polynomial time algorithm for optimizing a linear function over n-mixing set (a generalization of the well-known 1-mixing set).
Author Kulkarni, Kartik
Bansal, Manish
Author_xml – sequence: 1
  givenname: Kartik
  surname: Kulkarni
  fullname: Kulkarni, Kartik
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech
– sequence: 2
  givenname: Manish
  surname: Bansal
  fullname: Bansal, Manish
  organization: Grado Department of Industrial and Systems Engineering, Virginia Tech
BookMark eNp9kEtOwzAURS1UJErpEpC8AFJsx07SGajiJ1Vi0nn06titkWNHtktpl8GKSdTCkNF7urr3DM41GjnvFEK3lMwoqcg94yUTleAzRhibMSryOa8u0HjIM1EVbPT3C36FpjF-EEJoKQQp5mP0_fQFMmGwGx9M2rYRax9wu7PJZK1vdlZhCR1IkyCpBlufsmiOxm1wF_zaqvYOg2uwSRFvlFMBrDlCMt5FvO95OO19puRW2SEZmp1RUu1N7LneSfhUA6jZyWHTRzHFG3SpwUY1Pd8JWj0_rRav2fL95W3xuMwkq4qUlazSnOn5eq5L2tC8WgMTmivW5IRzXmoiqZCFViWT0FupirwQhBGigVKV5xMkTlgZfIxB6boLpoVwqCmpB7X1r9p6UFuf1fa7h9POuF5VC3sfbFMnOFgfdAAnTazz_xE_2b2Few
Cites_doi 10.1016/j.ejor.2016.06.040
10.1109/PESGM.2018.8586232
10.1007/s10107-015-0906-1
10.1016/j.disopt.2017.05.002
10.1287/opre.1120.1058
10.1287/opre.51.2.228.12786
10.1287/ijoc.2014.0597
10.1016/j.ejor.2014.02.044
10.1016/j.ejor.2013.02.052
10.1002/nav.21484
10.1016/j.dam.2018.07.029
10.1002/nav.21504
10.1007/s10107-003-0397-3
10.1080/0740817X.2010.504683
10.1002/1520-6750(199010)37:5<707::AID-NAV3220370509>3.0.CO;2-5
10.1007/PL00011430
10.1016/j.disopt.2012.07.003
10.1287/mnsc.49.9.1268.16570
10.1287/moor.8.4.538
10.1016/j.ejor.2017.05.008
10.1287/mnsc.47.8.1081.10232
10.1287/mnsc.1050.0378
10.1287/mnsc.44.6.831
10.1109/TPWRS.2014.2364257
10.1287/mnsc.18.1.12
10.1287/mnsc.28.10.1174
10.1016/j.ejor.2008.04.043
10.1287/opre.2019.1867
10.1287/mnsc.42.1.142
10.1016/j.ejor.2018.06.030
10.1016/0167-6377(88)90076-4
10.1016/j.ejor.2016.07.028
10.1287/opre.26.4.538
10.1287/moor.1070.0257
10.1016/j.orl.2022.01.002
10.1287/mnsc.15.9.506
10.1287/mnsc.26.7.669
10.1080/07408170304401
10.1287/opre.50.6.1058.350
10.1287/opre.1120.1141
10.1287/moor.18.4.767
10.1007/978-3-319-07557-0_9
10.1007/s10898-015-0392-2
ContentType Journal Article
Copyright Copyright © 2023 "IISE" 2023
Copyright_xml – notice: Copyright © 2023 "IISE" 2023
DBID AAYXX
CITATION
DOI 10.1080/24725854.2022.2153948
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2472-5862
EndPage 16
ExternalDocumentID 10_1080_24725854_2022_2153948
2153948
Genre Research Article
GroupedDBID 0R~
30N
AAGDL
AAHIA
AAJMT
AAPUL
AAQRR
ABDBF
ABJNI
ABPAQ
ABXUL
ABXYU
ACGFS
ACIWK
ACTIO
ACUHS
ADGTB
ADMLS
AEISY
AEMOZ
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AHQJS
AIJEM
AIYEW
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EAP
EAS
EBR
EBS
EBU
EMK
EPL
EST
ESX
GEVLZ
H13
I-F
IPNFZ
KYCEM
LJTGL
M4Z
MK~
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TDBHL
TEN
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
UT3
ZGOLN
AAYXX
CITATION
ID FETCH-LOGICAL-c286t-728f42f9b9f71d138ba25f4e2d304447f0c15c6fe72ca539863650200fa11e33
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2472-5854
IngestDate Sat Nov 29 06:20:27 EST 2025
Mon Oct 20 23:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-728f42f9b9f71d138ba25f4e2d304447f0c15c6fe72ca539863650200fa11e33
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_24725854_2022_2153948
crossref_primary_10_1080_24725854_2022_2153948
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationTitle IISE transactions
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Downey R.G. (CIT0015) 2012
CIT0036
CIT0035
CIT0038
CIT0037
Cormen T.H. (CIT0013) 2009
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
Voss S. (CIT0045) 2006
CIT0044
Flum J. (CIT0020) 2006
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0010
CIT0012
CIT0011
CIT0014
CIT0016
CIT0018
CIT0017
CIT0019
CIT0021
CIT0023
Pochet Y. (CIT0039) 2006
CIT0022
CIT0025
CIT0024
Joch A. (CIT0026) 2013
CIT0027
CIT0029
CIT0028
References_xml – ident: CIT0034
  doi: 10.1016/j.ejor.2016.06.040
– ident: CIT0046
  doi: 10.1109/PESGM.2018.8586232
– ident: CIT0007
  doi: 10.1007/s10107-015-0906-1
– ident: CIT0008
  doi: 10.1016/j.disopt.2017.05.002
– ident: CIT0048
  doi: 10.1287/opre.1120.1058
– ident: CIT0011
  doi: 10.1287/opre.51.2.228.12786
– ident: CIT0028
  doi: 10.1287/ijoc.2014.0597
– volume-title: Parameterized Complexity Theory
  year: 2006
  ident: CIT0020
– ident: CIT0003
  doi: 10.1016/j.ejor.2014.02.044
– ident: CIT0002
  doi: 10.1016/j.ejor.2013.02.052
– ident: CIT0031
  doi: 10.1002/nav.21484
– ident: CIT0006
  doi: 10.1016/j.dam.2018.07.029
– ident: CIT0033
  doi: 10.1002/nav.21504
– ident: CIT0032
  doi: 10.1007/s10107-003-0397-3
– ident: CIT0022
  doi: 10.1080/0740817X.2010.504683
– ident: CIT0017
  doi: 10.1002/1520-6750(199010)37:5<707::AID-NAV3220370509>3.0.CO;2-5
– volume-title: Parameterized Complexity
  year: 2012
  ident: CIT0015
– ident: CIT0021
  doi: 10.1007/PL00011430
– ident: CIT0040
  doi: 10.1016/j.disopt.2012.07.003
– ident: CIT0014
  doi: 10.1287/mnsc.49.9.1268.16570
– ident: CIT0030
  doi: 10.1287/moor.8.4.538
– ident: CIT0010
  doi: 10.1016/j.ejor.2017.05.008
– ident: CIT0004
  doi: 10.1287/mnsc.47.8.1081.10232
– ident: CIT0043
  doi: 10.1287/mnsc.1050.0378
– ident: CIT0041
  doi: 10.1287/mnsc.44.6.831
– volume-title: Introduction to Computational Optimization Models for Production Planning in a Supply Chain
  year: 2006
  ident: CIT0045
– ident: CIT0036
  doi: 10.1109/TPWRS.2014.2364257
– ident: CIT0018
  doi: 10.1287/mnsc.18.1.12
– ident: CIT0009
  doi: 10.1287/mnsc.28.10.1174
– ident: CIT0016
  doi: 10.1016/j.ejor.2008.04.043
– ident: CIT0049
  doi: 10.1287/opre.2019.1867
– ident: CIT0042
  doi: 10.1287/mnsc.42.1.142
– ident: CIT0035
  doi: 10.1016/j.ejor.2018.06.030
– ident: CIT0037
  doi: 10.1016/0167-6377(88)90076-4
– ident: CIT0001
  doi: 10.1016/j.ejor.2016.07.028
– ident: CIT0025
  doi: 10.1287/opre.26.4.538
– ident: CIT0044
  doi: 10.1287/moor.1070.0257
– ident: CIT0029
  doi: 10.1016/j.orl.2022.01.002
– ident: CIT0047
  doi: 10.1287/mnsc.15.9.506
– ident: CIT0019
  doi: 10.1287/mnsc.26.7.669
– ident: CIT0027
  doi: 10.1080/07408170304401
– ident: CIT0012
  doi: 10.1287/opre.50.6.1058.350
– ident: CIT0023
  doi: 10.1287/opre.1120.1141
– ident: CIT0038
  doi: 10.1287/moor.18.4.767
– volume-title: Introduction to Algorithms
  year: 2009
  ident: CIT0013
– ident: CIT0005
  doi: 10.1007/978-3-319-07557-0_9
– year: 2013
  ident: CIT0026
  publication-title: The Business of Federal Technology
– ident: CIT0024
  doi: 10.1007/s10898-015-0392-2
– volume-title: Production Planning by Mixed Integer Programming
  year: 2006
  ident: CIT0039
SSID ssj0001755069
Score 2.3874118
Snippet We study new generalizations of the classic capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1
SubjectTerms fixed-parameter tractable algorithms
multi-mode lot-sizing
Multi-module capacitated lot-sizing
n-mixing set
piecewise concave production cost
two-echelon capacitated lot-sizing
Title Exact algorithms for multi-module capacitated lot-sizing problem, and its generalizations with two-echelons and piecewise concave production costs
URI https://www.tandfonline.com/doi/abs/10.1080/24725854.2022.2153948
Volume ahead-of-print
WOSCitedRecordID wos000918127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2472-5862
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001755069
  issn: 2472-5854
  databaseCode: TFW
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IERF2wncTIiRMWAEEMFbJHj2CVSSaraUMTP4BdzzkO0AyywWjnLOt_lO5_uvkPoFDBCGoB1AqGyJEEGLhVHMiehuuCZoEEo61kED7fi7i5-ekru22pC25ZV-je0aYgi6n-1d26Z2a4i7pwFgkGU6zMijPUBs3gS-HZfgH7vmsPB43eWRUAEXs-180LES3VtPD9ttABQC_Slc8Az2PiHI2-i9TbqxJeNmWyhJV1uo7U5LsId9Hn9LpXDcjyqpoV7frEYjoTrekPyUuWvY40VAKvyPWk6x-PKEVt8gChuZ9KcYTgdLpzFo4bKuuvwxD7Xi92sItqXnfoV_-Wk0ErPCgv7VqWSb9pvlDdktrBknd1Fw8H18OqGtAMbiGJx5IhgsQmYSbLECJpTHmeShSbQLOeelk6YC0VDFRktmJKggjjiECCCnxpJqeZ8Dy2XVan3Ec5hWWQ5mFEWBjIRkjIhhJbwGpSUC9VD_e6S0klDy5HSlu2003XqdZ22uu6hZP4qU1fnQ0wzvCTlv8oe_EH2EK36AfV1AQw7Qstu-qqP0Yp6c4WdntTG-gW67ehB
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZoQGo5QGmp2vKoDxxxGtu78e6xQomCCDlFkNvK67XDSkk2yjpJxc_gFzOzD5Ee4FKu1s5oNLb3G49mviHkA2CEdgDrDEJlzYIUrlTU1xkLTU-migehrmYRfBurySSazeLDXhgsq8Q3tKuJIqp_NV5uTEa3JXG3IlACwlxMiQjRBdCScRAdkachYC3y50-H3__kWRTE4NVkO5RiKNY28vxN0wOIekBgegA9w5f_w-hT8qIJPOldfVJekSd2dUaeH9ARnpNfg3ttPNWLebHJ_Y9lScEmWpUcsmWRbReWGsBWg21pNqOLwrMy_wmitBlL85GCeTT3JZ3XbNZtkyfFdC_1-4JZrDzFFfxynVtj93kJeouV0TuLirKazxaWSl--JtPhYPppxJqZDcyIqO-ZEpELhIvT2CmecRmlWoQusCKTyEynXM_w0PSdVcJocEHUlxAjwlV1mnMr5QXprIqVvSQ0g2WVZnCS0jDQsdJcKKWshgeh5lKZK9JtdylZ18wcCW8IT1tfJ-jrpPH1FYkP9zLxVUrE1fNLEvlP2etHyN6Q49H06zgZf558eUNOcF59VQ8j3pKO32ztO_LM7Hxebt5XJ_c3cqvsaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDI5gQGg5LG8tywI5cCRAkrZpjytgBAKNOIyAW5XmMVQapqNpYBA_Y38xTh9iOMBluUa1ZTl27Vj2Z4QOIEZIC2GdQKosSZCBS8WR1CRUJzwTNAhltYvg9lr0evH9fXLTdBOWTVulf0PbGiii-ld75x5r23bEHbNAMMhyfUWEsSOIWTwJ4nm0AKlz5I283717L7MISMGrxXaeiniydo7nM04fItQH_NKZyNNd-QaZV9HPJu3Ef2s7WUNzZrSOlmfACDfQv_MXqRyWw0Exyd3DY4lBJFw1HJLHQj8NDVYQWZUfSjMaDwtHyvwVSHGzlOYQg3Q4dyUe1FjW7Ygn9sVe7KYFMb7v1J_4L8e5UWaal8C3GCn5bDwjXaPZwlHpyk3U7573Ty9Is7GBKBZHjggW24DZJEusoJryOJMstIFhmntcOmFPFA1VZI1gSoIK4ohDhgiOaiWlhvMt1BkVI_MLYQ3HItNgR1kYyERIyoQQRsJzUFIu1DY6ai8pHde4HClt4E5bXade12mj622UzF5l6qqCiK23l6T8S9rf_0G7j5Zuzrrp9WXvagf98Mvqq2YY9gd13OTJ7KJF9ezycrJX2e0bvDbrHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+algorithms+for+multi-module+capacitated+lot-sizing+problem%2C+and+its+generalizations+with+two-echelons+and+piecewise+concave+production+costs&rft.jtitle=IISE+transactions&rft.au=Kulkarni%2C+Kartik&rft.au=Bansal%2C+Manish&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis&rft.issn=2472-5854&rft.eissn=2472-5862&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1080%2F24725854.2022.2153948&rft.externalDocID=2153948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5854&client=summon