Computational Complexity of Holant Problems

We propose and explore a novel alternative framework to study the complexity of counting problems, called Holant problems. Compared to counting constraint satisfaction problems (#CSP), it is a refinement with a more explicit role for the constraint functions. Both graph homomorphism and #CSP can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 40; číslo 4; s. 1101 - 1132
Hlavní autoři: Cai, Jin-Yi, Lu, Pinyan, Xia, Mingji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose and explore a novel alternative framework to study the complexity of counting problems, called Holant problems. Compared to counting constraint satisfaction problems (#CSP), it is a refinement with a more explicit role for the constraint functions. Both graph homomorphism and #CSP can be viewed as special cases of Holant problems. We prove complexity dichotomy theorems in this framework. Our dichotomy theorems apply to local constraint functions, which are symmetric functions on Boolean input variables and evaluate to arbitrary real or complex values. We discover surprising tractable subclasses of counting problems, which could not easily be specified in the #CSP framework. When all unary functions are assumed to be free ($\mathrm{Holant}^*$ problems), the tractable ones consist of functions that are degenerate, or of arity at most two, or holographic transformations of Fibonacci gates. When only two special unary functions, the constant zero and constant one functions, are assumed to be free ($\mathrm{Holant}^c$ problems), we further identify three special families of tractable cases. Then we prove that all other cases are #P-hard. The main technical tool we use and develop is holographic reductions. Another technical tool used in combination with holographic reductions is polynomial interpolations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/100814585