Computer Algebra Libraries for Combinatorial Structures

This paper introduces the framework of decomposable combinatorial structures and their traversal algorithms. A combinatorial type is decomposable if it admits a specification in terms of unions, products, sequences, sets, and cycles, either in the labelled or in the unlabelled context. Many properti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 20; číslo 5; s. 653 - 671
Hlavní autoři: Flajolet, Philippe, Salvy, Bruno
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.1995
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces the framework of decomposable combinatorial structures and their traversal algorithms. A combinatorial type is decomposable if it admits a specification in terms of unions, products, sequences, sets, and cycles, either in the labelled or in the unlabelled context. Many properties of decomposable structures are decidable. Generating function equations, counting sequences, and random generation algorithms can be compiled from specifications. Asymptotic properties can be determined automatically for a reasonably large subclass. Maple libraries that implement such decision procedures are briefly surveyed (LUO, combstruct, equivalent). In addition, libraries for manipulating holonomic sequences and functions are presented (gfun, Mgfun).
ISSN:0747-7171
1095-855X
DOI:10.1006/jsco.1995.1070