Importance Sampling for a Monte Carlo Matrix Multiplication Algorithm, with Application to Information Retrieval

We perform importance sampling for a randomized matrix multiplication algorithm by Drineas, Kannan, and Mahoney and derive probabilities that minimize the expected value (with regard to the distributions of the matrix elements) of the variance. We compare these optimized probabilities with uniform p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on scientific computing Ročník 33; číslo 4; s. 1689 - 1706
Hlavní autori: Eriksson-Bique, Sylvester, Solbrig, Mary, Stefanelli, Michael, Warkentin, Sarah, Abbey, Ralph, Ipsen, Ilse C. F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Predmet:
ISSN:1064-8275, 1095-7197
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We perform importance sampling for a randomized matrix multiplication algorithm by Drineas, Kannan, and Mahoney and derive probabilities that minimize the expected value (with regard to the distributions of the matrix elements) of the variance. We compare these optimized probabilities with uniform probabilities and derive conditions under which the actual variance of the optimized probabilities is lower. Numerical experiments with query matching in information retrieval applications illustrate that the optimized probabilities produce more accurate matchings than the uniform probabilities and that they can also be computed efficiently.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/10080659X