Importance Sampling for a Monte Carlo Matrix Multiplication Algorithm, with Application to Information Retrieval

We perform importance sampling for a randomized matrix multiplication algorithm by Drineas, Kannan, and Mahoney and derive probabilities that minimize the expected value (with regard to the distributions of the matrix elements) of the variance. We compare these optimized probabilities with uniform p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 33; číslo 4; s. 1689 - 1706
Hlavní autoři: Eriksson-Bique, Sylvester, Solbrig, Mary, Stefanelli, Michael, Warkentin, Sarah, Abbey, Ralph, Ipsen, Ilse C. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We perform importance sampling for a randomized matrix multiplication algorithm by Drineas, Kannan, and Mahoney and derive probabilities that minimize the expected value (with regard to the distributions of the matrix elements) of the variance. We compare these optimized probabilities with uniform probabilities and derive conditions under which the actual variance of the optimized probabilities is lower. Numerical experiments with query matching in information retrieval applications illustrate that the optimized probabilities produce more accurate matchings than the uniform probabilities and that they can also be computed efficiently.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/10080659X