Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest

The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically det...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing applications Vol. 34; p. 101178
Main Authors: Saeed, Tahir, Hussain, Ejaz, Ullah, Sami, Iqbal, Javed, Atif, Salman, Yousaf, Mohsin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2024
Subjects:
ISSN:2352-9385, 2352-9385
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies.
AbstractList The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies.
The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies.
ArticleNumber 101178
Author Ullah, Sami
Yousaf, Mohsin
Saeed, Tahir
Iqbal, Javed
Atif, Salman
Hussain, Ejaz
Author_xml – sequence: 1
  givenname: Tahir
  surname: Saeed
  fullname: Saeed, Tahir
  email: tsaeed.phd20igis@student.nust.edu.pk
  organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan
– sequence: 2
  givenname: Ejaz
  surname: Hussain
  fullname: Hussain, Ejaz
  organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan
– sequence: 3
  givenname: Sami
  orcidid: 0000-0002-6997-137X
  surname: Ullah
  fullname: Ullah, Sami
  organization: Department of Forestry and Range Management, Kohsar University Murree, Murree 47150, Punjab, Pakistan
– sequence: 4
  givenname: Javed
  orcidid: 0000-0002-9167-059X
  surname: Iqbal
  fullname: Iqbal, Javed
  organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan
– sequence: 5
  givenname: Salman
  orcidid: 0000-0003-0189-3827
  surname: Atif
  fullname: Atif, Salman
  organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan
– sequence: 6
  givenname: Mohsin
  surname: Yousaf
  fullname: Yousaf, Mohsin
  organization: Independent Researcher, Pakistan
BookMark eNp9kE1PAjEQhhuDiYj8Ai894mGxH-zXwQMhfiUkkqjnprSzULLbYrtL9Af4vy2sB09eZiYz7zuTeS7RwDoLCF1TMqWEZre7qQ8ywJQRNjt2aF6coSHjKUtKXqSDP_UFGoewIyTaUkppOUTfK_CV8420CjAcZN3J1jiLXYWN1eZgdCdr3HoArKEFdRpKq3GATQO27dWy3jhv2m0TcBeM3eD58hVr2cq4BC-2xuOVsYAnMXYBe_e57vxma8wNjrchtFfovJJ1gPFvHqH3h_u3xVOyfHl8XsyXiWJF1ia8JGkOszXNJKM56EpXhKosh4wqLitG8iy-n7ICsrUiJZnxKmeUcLYmmuiU8BGa9Hv33n108bBoTFBQ19KC64LgNOVpWRRZGaW8lyrvQvBQib03jfRfghJx5C524sRdHLmLnnt03fUuiF8cDHgRlIHIVhsf4QntzL_-H5L-j3Y
Cites_doi 10.3390/f10080694
10.1016/j.isprsjprs.2009.04.002
10.3390/rs14143480
10.1016/j.foreco.2013.09.045
10.1002/2688-8319.12090
10.5194/bg-13-1571-2016
10.3390/f8010007
10.1038/s41598-017-07200-0
10.14358/PERS.72.11.1287
10.3390/rs4020377
10.1139/x11-083
10.3390/f11020223
10.14358/PERS.76.6.701
10.3390/rs12071078
10.3390/f6113899
10.1080/07038992.2016.1196582
10.1111/2041-210X.13830
10.14358/PERS.70.3.351
10.3390/f8090340
10.1111/brv.12351
10.3390/rs70607892
10.3390/rs13020322
10.15287/afr.2018.1282
10.1007/s001380050091
10.1007/s11273-014-9379-x
10.1111/geb.12371
10.3389/ffgc.2022.756115
10.1016/S0168-1699(02)00121-7
10.1016/j.rse.2020.112061
10.3390/rs11111263
10.1016/j.isprsjprs.2018.11.008
10.1016/j.rse.2012.01.020
10.3390/rs14010016
10.3390/rs4040950
10.1016/j.isprsjprs.2014.03.014
10.1515/geo-2020-0290
10.1017/S0266467405003019
10.3390/f6113882
10.1111/j.1744-7429.2007.00353.x
10.1016/S0034-4257(00)00101-2
10.14358/PERS.71.9.1071
10.5589/m08-055
10.3390/rs10020161
10.1553/giscience2015s178
10.14358/PERS.78.1.75
10.1007/s10310-007-0041-9
10.3390/rs9020148
10.1139/X09-030
10.1080/01431161.2010.507790
10.1109/TGRS.2014.2315649
10.14358/PERS.80.9.863
10.1016/j.rse.2016.05.028
10.1109/TGRS.2016.2543225
10.1080/20964129.2019.1591169
10.1016/j.foreco.2020.118397
10.14358/PERS.72.8.923
10.1139/cjfr-2020-0433
10.1016/j.isprsjprs.2010.08.003
10.3390/su14126950
10.1080/01431161.2014.967886
10.1080/01431160902842318
10.1007/s11676-015-0088-y
10.1109/TGRS.2016.2538203
10.3390/rs11091086
10.3390/rs6043475
10.1111/2041-210X.12575
10.1080/01431161.2016.1264028
10.1016/j.compag.2019.104871
10.1111/gcb.13388
10.14358/PERS.70.5.589
10.1139/x01-013
10.3390/rs8040333
10.1080/07038992.2014.943700
10.1109/34.400568
10.14358/PERS.72.4.357
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rsase.2024.101178
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2352-9385
ExternalDocumentID 10_1016_j_rsase_2024_101178
S2352938524000429
GroupedDBID --M
0R~
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
KQ8
O9-
OAUVE
ROL
SPC
SPCBC
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c286t-39057e4b16a217edfdf01c67e61c3af2076011528e6bc09043f721032b0d0d503
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001218798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-9385
IngestDate Sun Sep 28 00:47:42 EDT 2025
Sat Nov 29 03:02:11 EST 2025
Sat Jun 01 15:42:40 EDT 2024
IsPeerReviewed false
IsScholarly true
Keywords Individual tree detection
ITD algorithms
Forest structure
LiDAR
Chir pine forests
Airborne laser scanner (ALS)
Local maxima
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-39057e4b16a217edfdf01c67e61c3af2076011528e6bc09043f721032b0d0d503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0189-3827
0000-0002-6997-137X
0000-0002-9167-059X
PQID 3153598869
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153598869
crossref_primary_10_1016_j_rsase_2024_101178
elsevier_sciencedirect_doi_10_1016_j_rsase_2024_101178
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing applications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Burman, Soininen (bib8) 2015
Latella, Sola, Camporeale (bib39) 2021; 13
Zhang, Zhou, Qiu (bib90) 2015; 7
Sheng (bib67) 2001
Vastaranta, Saarinen, Kankare, Holopainen, Kaartinen, Hyyppä, Hyyppä (bib75) 2014; 6
Goldbergs, Maier, Levick, Edwards (bib23) 2018; 10
Bater, Coops, Gergel, LeMay, Collins (bib3) 2009; 39
Rahman, Gorte (bib64) 2009
Silva, Hudak, Vierling, Loudermilk, O'Brien, Hiers, Jack, Gonzalez-Benecke, Lee, Falkowski, Khosravipour (bib69) 2016; 42
Mizanur Rahman, Nabiul Islam Khan, Fazlul Hoque, Ahmed (bib48) 2015; 23
Lim, Treitz, Groot, St-Onge (bib42) 2001
Lawrence, Coe, Walker, Verchot, Vandecar (bib40) 2022; 5
Dalponte, Coomes (bib16) 2016; 7
Bohlman, O'Brien (bib6) 2006; 22
St-Onge, Audet, Bégin (bib72) 2015; 6
Wang, Gong, Biging (bib81) 2004; 70
Thompson, Mackey, McNulty, Mosseler (bib74) 2009; 43
Popescu, Wynne (bib62) 2004; 70
Larsen, Eriksson, Descombes, Perrin, Brandtberg, Gougeon (bib38) 2011; 32
Roussel, Auty, Coops, Tompalski, Goodbody, Meador, Bourdon, De Boissieu, Achim (bib66) 2020; 251
Mund, Wilke, Körner, Schultz (bib52) 2015
Pirotti, Paterno, Pividori (bib59) 2020
Sparks, Corrao, Smith (bib71) 2022; 14
Popescu, Wynne, Nelson (bib63) 2002; 37
Ma, Pang, Wang, Liang, Chen, Lu, Weinacker, Koch (bib45) 2020; 12
Plowright, Roussel (bib61) 2021
M.Z.A. Rahman (bib53) 2008
Corona, Pasta, Giardina, La Mantia (bib13) 2012; 146
Pitkänen (bib60) 2001; 31
Zhen, Quackenbush, Zhang (bib92) 2016; 8
Heurich (bib28) 2008; 255
Falkowski, Smith, Gessler, Hudak, Vierling, Evans (bib18) 2008; 34
Ferraz, Saatchi, Mallet, Meyer (bib20) 2016; 183
Reitberger, Schnörr, Krzystek, Stilla (bib65) 2009; 64
Brandtberg, Walter (bib7) 1998; 11
Moe, Owari, Furuya, Hiroshima (bib49) 2020; 11
Vega, Hamrouni, El Mokhtari, Morel, Bock, Renaud, Bouvier, Durrieu (bib79) 2014; 33
Khosravipour, Skidmore, Isenburg, Wang, Hussin (bib35) 2014; 80
Ota, Ogawa, Shimizu, Kajisa, Mizoue, Yoshida, Takao, Hirata, Furuya, Sano, Sokh, Ma, Ito, Toriyama, Monda, Saito, Kiyono, Chann, Ket (bib54) 2015; 6
Piedallu, Gégout (bib58) 2005; 71
Ploton, Barbier, Takoudjou Momo, Réjou-Méchain, Boyemba Bosela, Chuyong, Dauby, Droissart, Fayolle, Goodman, Henry (bib94) 2016; 13
Sibona, Vitali, Meloni, Caffo, Dotta, Lingua, Motta, Garbarino (bib68) 2017; 8
Chen, Baldocchi, Gong, Kelly (bib10) 2006; 72
Maturbong, Wing, Strimbu, Burnett (bib46) 2019; 0
Palace, Keller, Asner, Hagen, Braswell (bib55) 2008; 40
Gougeon, Leckie (bib24) 2006; 72
Duncanson, Dubayah, Enquist (bib17) 2015; 24
Guo, Li, Yu, Alvarez (bib26) 2010; 76
Koch, Heyder, Weinacker (bib36) 2006; 72
Vaughn, Moskal, Turnblom (bib76) 2012; 4
Cheng (bib11) 1995; 17
Hamraz, Contreras, Zhang (bib27) 2017; 7
Mohan, Silva, Klauberg, Jat, Catts, Cardil, Hudak, Dia (bib50) 2017; 8
Ferraz, Bretar, Jacquemoud, Gonçalves, Pereira, Tomé, Soares (bib19) 2012; 121
Ganz, Käber, Adler (bib22) 2019; 10
Lu, Guo, Li, Flanagan (bib44) 2014; 94
Yu, Hyyppä, Vastaranta, Holopainen, Viitala (bib88) 2011; 66
Xiao, Zaforemska, Smigaj, Wang, Gaulton (bib86) 2019; 11
Bian, Zou, Shu, Yu (bib4) 2014
Panagiotidis, Abdollahnejad, Surový, Chiteculo (bib56) 2017; 38
Ferreira, Almeida, Papa, Minervino, Veras, Formighieri, Santos, Ferreira, Figueiredo, Ferreira (bib21) 2020; 475
Kaartinen, Hyyppä (bib33) 2008
Wallace, Lucieer, Watson (bib80) 2014; 52
Creasy, Tinkham, Hoffman, Vogeler (bib14) 2021; 51
Cao, Ball, Coomes, Steinmeier, Knapp, Wilkes, Disney, Calders, Burt, Lin, Jackson (bib9) 2023; 123
Kaartinen, Hyyppä, Yu, Vastaranta, Hyyppä, Kukko, Holopainen, Heipke, Hirschmugl, Morsdorf, Næsset, Pitkänen, Popescu, Solberg, Wolf, Wu (bib34) 2012; 4
Yao, Wang, Zhang, Xiong (bib87) 2022; 14
Aubry-Kientz, Dutrieux, Ferraz, Saatchi, Hamraz, Williams, Coomes, Piboule, Vincent (bib2) 2019; 11
Daba, Soromessa (bib15) 2019; 5
Vauhkonen, MehtÄtalo, Packalén (bib77) 2011; 41
Liu, Lim, Shen, Yebra (bib43) 2019; 163
Wang, Hyyppä, Liang, Kaartinen, Yu, Lindberg, Holmgren, Qin, Mallet, Ferraz, Torabzadeh, Morsdorf, Zhu, Liu, Alho (bib82) 2016; 54
Alexander (bib1) 2009; 30
Goodman, Phillips, del Castillo Torres, Freitas, Cortese, Monteagudo, Baker (bib93) 2013; 310
Jucker, Caspersen, Chave, Antin, Barbier, Bongers, Dalponte, van Ewijk, Forrester, Haeni, Higgins, Holdaway, Iida, Lorimer, Marshall, Momo, Moncrieff, Ploton, Poorter, Rahman, Schlund, Sonké, Sterck, Trugman, Usoltsev, Vanderwel, Waldner, Wedeux, Wirth, Wöll, Woods, Xiang, Zimmermann, Coomes (bib31) 2017; 23
Tang, Shao (bib73) 2015; 26
Paris, Valduga, Bruzzone (bib57) 2016; 54
Zhao, Pang, Li, Liu (bib91) 2014; 35
Zhang, Zhou, Qiu (bib89) 2015; 7
Wulder, Niemann, Goodenough (bib85) 2000; 73
Silva, Hudak, Vierling, Valbuena, Cardil, Mohan, Almeida, Broadbent, Almeyda Zambrano, Wilkinson, Sharma, Drake, Medley, Vogel, Prata, Atkins, Hamamura, Johnson, Klauberg (bib70) 2022; 13
Vauhkonen, Ene, Gupta, Heinzel, Holmgren, Pitkänen, Solberg, Wang, Weinacker, Hauglin, Lien, Packalén, Gobakken, Koch, Næsset, Tokola, Maltamo (bib78) 2012; 85
Goutte, Gaussier (bib25) 2005
Kwak, Lee, Lee, Biging, Gong (bib37) 2007; 12
Mohan, Leite, Broadbent, Wan Mohd Jaafar, Srinivasan, Bajaj, Dalla Corte, Do Amaral, Gopan, Saad, Muhmad Kamarulzaman, Prata, Llewelyn, Johnson, Doaemo, Bohlman, Almeyda Zambrano, Cardil (bib51) 2021; 13
Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (bib83) 2019; 147
Błaszczak-Bąk, Janicka, Kozakiewicz, Chudzikiewicz, Bąk (bib5) 2022; 14
Hu, Chen, Xu (bib30) 2017; 9
Li, Guo, Jakubowski, Kelly (bib41) 2012; 78
Hisano, Searle, Chen (bib29) 2018; 93
Kaarakka, Cornett, Domke, Ontl, Dee (bib32) 2021; 2
Wallace (10.1016/j.rsase.2024.101178_bib80) 2014; 52
Paris (10.1016/j.rsase.2024.101178_bib57) 2016; 54
Ferraz (10.1016/j.rsase.2024.101178_bib20) 2016; 183
Goutte (10.1016/j.rsase.2024.101178_bib25) 2005
Reitberger (10.1016/j.rsase.2024.101178_bib65) 2009; 64
Hamraz (10.1016/j.rsase.2024.101178_bib27) 2017; 7
Pirotti (10.1016/j.rsase.2024.101178_bib59) 2020
Sparks (10.1016/j.rsase.2024.101178_bib71) 2022; 14
Ferreira (10.1016/j.rsase.2024.101178_bib21) 2020; 475
Roussel (10.1016/j.rsase.2024.101178_bib66) 2020; 251
Wulder (10.1016/j.rsase.2024.101178_bib85) 2000; 73
Hisano (10.1016/j.rsase.2024.101178_bib29) 2018; 93
Larsen (10.1016/j.rsase.2024.101178_bib38) 2011; 32
Zhen (10.1016/j.rsase.2024.101178_bib92) 2016; 8
Zhang (10.1016/j.rsase.2024.101178_bib90) 2015; 7
Moe (10.1016/j.rsase.2024.101178_bib49) 2020; 11
Tang (10.1016/j.rsase.2024.101178_bib73) 2015; 26
Popescu (10.1016/j.rsase.2024.101178_bib62) 2004; 70
Zhang (10.1016/j.rsase.2024.101178_bib89) 2015; 7
Sibona (10.1016/j.rsase.2024.101178_bib68) 2017; 8
Ploton (10.1016/j.rsase.2024.101178_bib94) 2016; 13
Cheng (10.1016/j.rsase.2024.101178_bib11) 1995; 17
Duncanson (10.1016/j.rsase.2024.101178_bib17) 2015; 24
Sheng (10.1016/j.rsase.2024.101178_bib67) 2001
Vastaranta (10.1016/j.rsase.2024.101178_bib75) 2014; 6
Pitkänen (10.1016/j.rsase.2024.101178_bib60) 2001; 31
Wang (10.1016/j.rsase.2024.101178_bib82) 2016; 54
Koch (10.1016/j.rsase.2024.101178_bib36) 2006; 72
Dalponte (10.1016/j.rsase.2024.101178_bib16) 2016; 7
Corona (10.1016/j.rsase.2024.101178_bib13) 2012; 146
Brandtberg (10.1016/j.rsase.2024.101178_bib7) 1998; 11
Bohlman (10.1016/j.rsase.2024.101178_bib6) 2006; 22
M.Z.A. Rahman (10.1016/j.rsase.2024.101178_bib53) 2008
Zhao (10.1016/j.rsase.2024.101178_bib91) 2014; 35
Kaartinen (10.1016/j.rsase.2024.101178_bib33) 2008
Vauhkonen (10.1016/j.rsase.2024.101178_bib78) 2012; 85
Alexander (10.1016/j.rsase.2024.101178_bib1) 2009; 30
Li (10.1016/j.rsase.2024.101178_bib41) 2012; 78
Lawrence (10.1016/j.rsase.2024.101178_bib40) 2022; 5
Ferraz (10.1016/j.rsase.2024.101178_bib19) 2012; 121
Yao (10.1016/j.rsase.2024.101178_bib87) 2022; 14
Heurich (10.1016/j.rsase.2024.101178_bib28) 2008; 255
Guo (10.1016/j.rsase.2024.101178_bib26) 2010; 76
Goodman (10.1016/j.rsase.2024.101178_bib93) 2013; 310
Mohan (10.1016/j.rsase.2024.101178_bib50) 2017; 8
Mund (10.1016/j.rsase.2024.101178_bib52) 2015
Popescu (10.1016/j.rsase.2024.101178_bib63) 2002; 37
Burman (10.1016/j.rsase.2024.101178_bib8) 2015
Maturbong (10.1016/j.rsase.2024.101178_bib46) 2019; 0
Silva (10.1016/j.rsase.2024.101178_bib70) 2022; 13
Gougeon (10.1016/j.rsase.2024.101178_bib24) 2006; 72
Falkowski (10.1016/j.rsase.2024.101178_bib18) 2008; 34
Błaszczak-Bąk (10.1016/j.rsase.2024.101178_bib5) 2022; 14
Ma (10.1016/j.rsase.2024.101178_bib45) 2020; 12
Mizanur Rahman (10.1016/j.rsase.2024.101178_bib48) 2015; 23
Bater (10.1016/j.rsase.2024.101178_bib3) 2009; 39
Wang (10.1016/j.rsase.2024.101178_bib81) 2004; 70
Khosravipour (10.1016/j.rsase.2024.101178_bib35) 2014; 80
Lim (10.1016/j.rsase.2024.101178_bib42) 2001
Vaughn (10.1016/j.rsase.2024.101178_bib76) 2012; 4
Daba (10.1016/j.rsase.2024.101178_bib15) 2019; 5
Ota (10.1016/j.rsase.2024.101178_bib54) 2015; 6
Liu (10.1016/j.rsase.2024.101178_bib43) 2019; 163
Panagiotidis (10.1016/j.rsase.2024.101178_bib56) 2017; 38
Bian (10.1016/j.rsase.2024.101178_bib4) 2014
Kwak (10.1016/j.rsase.2024.101178_bib37) 2007; 12
Vega (10.1016/j.rsase.2024.101178_bib79) 2014; 33
Creasy (10.1016/j.rsase.2024.101178_bib14) 2021; 51
Wang (10.1016/j.rsase.2024.101178_bib83) 2019; 147
Silva (10.1016/j.rsase.2024.101178_bib69) 2016; 42
Jucker (10.1016/j.rsase.2024.101178_bib31) 2017; 23
Cao (10.1016/j.rsase.2024.101178_bib9) 2023; 123
Yu (10.1016/j.rsase.2024.101178_bib88) 2011; 66
Goldbergs (10.1016/j.rsase.2024.101178_bib23) 2018; 10
Chen (10.1016/j.rsase.2024.101178_bib10) 2006; 72
Kaarakka (10.1016/j.rsase.2024.101178_bib32) 2021; 2
Kaartinen (10.1016/j.rsase.2024.101178_bib34) 2012; 4
Lu (10.1016/j.rsase.2024.101178_bib44) 2014; 94
Mohan (10.1016/j.rsase.2024.101178_bib51) 2021; 13
Ganz (10.1016/j.rsase.2024.101178_bib22) 2019; 10
Hu (10.1016/j.rsase.2024.101178_bib30) 2017; 9
Xiao (10.1016/j.rsase.2024.101178_bib86) 2019; 11
St-Onge (10.1016/j.rsase.2024.101178_bib72) 2015; 6
Aubry-Kientz (10.1016/j.rsase.2024.101178_bib2) 2019; 11
Rahman (10.1016/j.rsase.2024.101178_bib64) 2009
Latella (10.1016/j.rsase.2024.101178_bib39) 2021; 13
Plowright (10.1016/j.rsase.2024.101178_bib61) 2021
Piedallu (10.1016/j.rsase.2024.101178_bib58) 2005; 71
Vauhkonen (10.1016/j.rsase.2024.101178_bib77) 2011; 41
Palace (10.1016/j.rsase.2024.101178_bib55) 2008; 40
Thompson (10.1016/j.rsase.2024.101178_bib74) 2009; 43
References_xml – volume: 78
  start-page: 75
  year: 2012
  end-page: 84
  ident: bib41
  article-title: A new method for segmenting individual trees from the lidar point cloud
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 22
  start-page: 123
  year: 2006
  end-page: 136
  ident: bib6
  article-title: Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama
  publication-title: J. Trop. Ecol.
– start-page: 1055
  year: 2020
  end-page: 1060
  ident: bib59
  article-title: Application of tree detection methods over lidar data for forest volume estimation
  publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci.
– volume: 70
  start-page: 351
  year: 2004
  end-page: 357
  ident: bib81
  article-title: Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 183
  start-page: 318
  year: 2016
  end-page: 333
  ident: bib20
  article-title: Lidar detection of individual tree size in tropical forests
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 71
  year: 2002
  end-page: 95
  ident: bib63
  article-title: Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size
  publication-title: Comput. Electron. Agric.
– volume: 251
  year: 2020
  ident: bib66
  article-title: lidR: an R package for analysis of Airborne Laser Scanning (ALS) data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 3882
  year: 2015
  end-page: 3898
  ident: bib54
  article-title: Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest
  publication-title: Forests
– volume: 310
  start-page: 994
  year: 2013
  end-page: 1004
  ident: bib93
  article-title: Amazon palm biomass and allometry
  publication-title: For. Ecol. Manag.
– volume: 85
  start-page: 27
  year: 2012
  end-page: 40
  ident: bib78
  article-title: Comparative testing of single-tree detection algorithms under different types of forest
  publication-title: For. Int. J. For. Res.
– volume: 24
  start-page: 1465
  year: 2015
  end-page: 1475
  ident: bib17
  article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States
  publication-title: Global Ecol. Biogeogr.
– volume: 7
  start-page: 1236
  year: 2016
  end-page: 1245
  ident: bib16
  article-title: Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
  publication-title: Methods Ecol. Evol.
– volume: 7
  start-page: 6770
  year: 2017
  ident: bib27
  article-title: Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds
  publication-title: Sci. Rep.
– volume: 475
  year: 2020
  ident: bib21
  article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning
  publication-title: For. Ecol. Manag.
– volume: 6
  start-page: 3899
  year: 2015
  end-page: 3922
  ident: bib72
  article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
– start-page: 1
  year: 2009
  end-page: 2
  ident: bib64
  article-title: Tree crown delineation from high resolution airborne lidar based on densities of high points
  publication-title: Proceedings ISPRS Workshop Laserscanning
– volume: 40
  start-page: 141
  year: 2008
  end-page: 150
  ident: bib55
  article-title: Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties
  publication-title: Biotropica
– year: 2001
  ident: bib42
  article-title: Estimation of individual tree heights using LIDAR remote sensing
  publication-title: Proceedings of the Twenty-Third Annual Canadian Symposium on Remote Sensing
– volume: 26
  start-page: 791
  year: 2015
  end-page: 797
  ident: bib73
  article-title: Drone remote sensing for forestry research and practices
  publication-title: J. For. Res.
– volume: 4
  start-page: 377
  year: 2012
  end-page: 403
  ident: bib76
  article-title: Tree species detection accuracies using discrete point lidar and airborne waveform lidar
  publication-title: Rem. Sens.
– year: 2014
  ident: bib4
  article-title: Individual tree delineation in deciduous forest areas with LiDAR point clouds
  publication-title: Can. J. Rem. Sens.
– volume: 146
  start-page: 252
  year: 2012
  end-page: 257
  ident: bib13
  article-title: Assessing the biomass of shrubs typical of Mediterranean pre-forest communities
  publication-title: Plant Biosyst. - Int. J. Deal. Asp. Plant Biol.
– volume: 80
  start-page: 863
  year: 2014
  end-page: 872
  ident: bib35
  article-title: Generating pit-free canopy height models from airborne lidar
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 6
  start-page: 3475
  year: 2014
  end-page: 3491
  ident: bib75
  article-title: Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries
  publication-title: Rem. Sens.
– volume: 8
  start-page: 333
  year: 2016
  ident: bib92
  article-title: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data
  publication-title: Rem. Sens.
– volume: 8
  start-page: 340
  year: 2017
  ident: bib50
  article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest
  publication-title: Forests
– volume: 64
  start-page: 561
  year: 2009
  end-page: 574
  ident: bib65
  article-title: 3D segmentation of single trees exploiting full waveform LIDAR data
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– year: 2008
  ident: bib33
  article-title: EuroSDR/ISPRS Project, Commission II “Tree Extraction”
– volume: 13
  start-page: 322
  year: 2021
  ident: bib39
  article-title: A density-based algorithm for the detection of individual trees from LiDAR data
  publication-title: Rem. Sens.
– volume: 121
  start-page: 210
  year: 2012
  end-page: 223
  ident: bib19
  article-title: 3-D mapping of a multi-layered Mediterranean forest using ALS data
  publication-title: Remote Sens. Environ.
– volume: 0
  year: 2019
  ident: bib46
  article-title: Forest inventory sensivity to UAS-based image processing algorithms
  publication-title: Ann. For. Res.
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: bib11
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 73
  start-page: 103
  year: 2000
  end-page: 114
  ident: bib85
  article-title: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 832
  year: 2001
  end-page: 844
  ident: bib60
  article-title: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods
  publication-title: Can. J. For. Res.
– volume: 7
  start-page: 7892
  year: 2015
  end-page: 7913
  ident: bib90
  article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory
  publication-title: Rem. Sens.
– volume: 43
  start-page: 1
  year: 2009
  end-page: 67
  ident: bib74
  article-title: Forest resilience, biodiversity, and climate change
  publication-title: Secr. Conv. Biol. Divers. Montr. Tech. Ser. No
– volume: 71
  start-page: 1071
  year: 2005
  end-page: 1078
  ident: bib58
  article-title: Effects of forest environment and survey protocol on GPS accuracy
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 5
  start-page: 86
  year: 2019
  end-page: 97
  ident: bib15
  article-title: Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species
  publication-title: Ecosys. Health Sustain.
– volume: 14
  start-page: 16
  year: 2022
  ident: bib5
  article-title: Methodology of calculating the number of trees based on ALS data for forestry applications for the area of samławki forest district
  publication-title: Rem. Sens.
– volume: 11
  start-page: 64
  year: 1998
  end-page: 73
  ident: bib7
  article-title: Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis
  publication-title: Mach. Vis. Appl.
– volume: 13
  start-page: 1028
  year: 2021
  end-page: 1039
  ident: bib51
  article-title: Individual tree detection using UAV-lidar and UAV-SfM data: a tutorial for beginners
  publication-title: Open Geosci.
– volume: 72
  start-page: 923
  year: 2006
  end-page: 932
  ident: bib10
  article-title: Isolating individual trees in a savanna woodland using small footprint lidar data
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 147
  start-page: 132
  year: 2019
  end-page: 145
  ident: bib83
  article-title: Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 38
  start-page: 2392
  year: 2017
  end-page: 2410
  ident: bib56
  article-title: Determining tree height and crown diameter from high-resolution UAV imagery
  publication-title: Int. J. Rem. Sens.
– volume: 30
  start-page: 3843
  year: 2009
  end-page: 3848
  ident: bib1
  article-title: Delineating tree crowns from airborne laser scanning point cloud data using Delaunay triangulation
  publication-title: Int. J. Rem. Sens.
– volume: 70
  start-page: 589
  year: 2004
  end-page: 604
  ident: bib62
  article-title: Seeing the trees in the forest
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 13
  start-page: 1164
  year: 2022
  end-page: 1176
  ident: bib70
  article-title: Treetop : a Shiny‐based application and R package for extracting forest information from LiDAR data for ecologists and conservationists
  publication-title: Methods Ecol. Evol.
– volume: 11
  start-page: 1263
  year: 2019
  ident: bib86
  article-title: Mean shift segmentation assessment for individual forest tree delineation from airborne lidar data
  publication-title: Rem. Sens.
– volume: 255
  start-page: 2416
  year: 2008
  end-page: 2433
  ident: bib28
  article-title: Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park
  publication-title: For. Ecol. Manag., Large-Scale Experimentation and Oak Regeneration
– volume: 34
  start-page: S338
  year: 2008
  end-page: S350
  ident: bib18
  article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data
  publication-title: Can. J. Rem. Sens.
– volume: 23
  start-page: 269
  year: 2015
  end-page: 283
  ident: bib48
  article-title: Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones
  publication-title: Wetl. Ecol. Manag.
– volume: 7
  start-page: 7892
  year: 2015
  end-page: 7913
  ident: bib89
  article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory
  publication-title: Rem. Sens.
– volume: 4
  start-page: 950
  year: 2012
  end-page: 974
  ident: bib34
  article-title: An international comparison of individual tree detection and extraction using airborne laser scanning
  publication-title: Rem. Sens.
– volume: 72
  start-page: 1287
  year: 2006
  end-page: 1297
  ident: bib24
  article-title: The individual tree crown approach applied to ikonos images of a coniferous plantation area
  publication-title: Photogramm. Eng. Rem. Sens.
– start-page: 178
  year: 2015
  end-page: 188
  ident: bib52
  article-title: Detecting multi-layered forest stands using high density airborne LiDAR data
  publication-title: GI_Forum
– year: 2001
  ident: bib67
  article-title: Model-Based Conifer-Crown Surface Reconstruction from High-Resolution Aerial Images
– volume: 10
  start-page: 161
  year: 2018
  ident: bib23
  article-title: Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian savannas
  publication-title: Rem. Sens.
– volume: 23
  start-page: 177
  year: 2017
  end-page: 190
  ident: bib31
  article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes
  publication-title: Global Change Biol.
– volume: 2
  year: 2021
  ident: bib32
  article-title: Improved forest management as a natural climate solution: a review
  publication-title: Ecol. Solut. Evid.
– volume: 52
  start-page: 7619
  year: 2014
  end-page: 7628
  ident: bib80
  article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 41
  start-page: 1649
  year: 2011
  end-page: 1658
  ident: bib77
  article-title: Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations
  publication-title: Can. J. For. Res.
– year: 2015
  ident: bib8
  article-title: TerraMatch User's Guide
– volume: 32
  start-page: 5827
  year: 2011
  end-page: 5852
  ident: bib38
  article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
  publication-title: Int. J. Rem. Sens.
– volume: 54
  start-page: 4190
  year: 2016
  end-page: 4203
  ident: bib57
  article-title: A hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 14
  start-page: 3480
  year: 2022
  ident: bib71
  article-title: Cross-comparison of individual tree detection methods using low and high pulse density airborne laser scanning data
  publication-title: Rem. Sens.
– volume: 12
  start-page: 425
  year: 2007
  end-page: 434
  ident: bib37
  article-title: Detection of individual trees and estimation of tree height using LiDAR data
  publication-title: J. For. Res.
– year: 2021
  ident: bib61
  article-title: ForestTools: Analyzing Remotely Sensed Forest Data
– volume: 11
  start-page: 1086
  year: 2019
  ident: bib2
  article-title: A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests
  publication-title: Rem. Sens.
– volume: 42
  start-page: 554
  year: 2016
  end-page: 573
  ident: bib69
  article-title: Imputation of individual longleaf pine (
  publication-title: Can. J. Rem. Sens.
– volume: 10
  start-page: 694
  year: 2019
  ident: bib22
  article-title: Measuring tree height with remote sensing—a comparison of photogrammetric and LiDAR data with different field measurements
  publication-title: Forests
– volume: 33
  start-page: 98
  year: 2014
  end-page: 108
  ident: bib79
  article-title: PTrees: a point-based approach to forest tree extraction from lidar data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 163
  year: 2019
  ident: bib43
  article-title: A hybrid method for segmenting individual trees from airborne lidar data
  publication-title: Comput. Electron. Agric.
– volume: 123
  year: 2023
  ident: bib9
  article-title: Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 72
  start-page: 357
  year: 2006
  end-page: 363
  ident: bib36
  article-title: Detection of individual tree crowns in airborne lidar data
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 93
  start-page: 439
  year: 2018
  end-page: 456
  ident: bib29
  article-title: Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems
  publication-title: Biol. Rev.
– volume: 14
  start-page: 6950
  year: 2022
  ident: bib87
  article-title: Error analysis of measuring the diameter, tree height, and volume of standing tree using electronic theodolite
  publication-title: Sustainability
– volume: 11
  start-page: 223
  year: 2020
  ident: bib49
  article-title: Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in northern Japan
  publication-title: Forests
– volume: 8
  start-page: 7
  year: 2017
  ident: bib68
  article-title: Direct measurement of tree height provides different results on the assessment of LiDAR accuracy
  publication-title: Forests
– start-page: 345
  year: 2005
  end-page: 359
  ident: bib25
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
  publication-title: Advances in Information Retrieval, Lecture Notes in Computer Science
– volume: 9
  start-page: 148
  year: 2017
  ident: bib30
  article-title: Adaptive mean shift-based identification of individual trees using airborne LiDAR data
  publication-title: Rem. Sens.
– volume: 54
  start-page: 5011
  year: 2016
  end-page: 5027
  ident: bib82
  article-title: International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 51
  start-page: 1093
  year: 2021
  end-page: 1105
  ident: bib14
  article-title: Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds
  publication-title: Can. J. For. Res.
– volume: 39
  start-page: 1080
  year: 2009
  end-page: 1091
  ident: bib3
  article-title: Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing
  publication-title: Can. J. For. Res.
– volume: 76
  start-page: 701
  year: 2010
  end-page: 712
  ident: bib26
  article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods
  publication-title: Photogramm. Eng. Rem. Sens.
– volume: 12
  start-page: 1078
  year: 2020
  ident: bib45
  article-title: Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features
  publication-title: Rem. Sens.
– volume: 35
  start-page: 7199
  year: 2014
  end-page: 7218
  ident: bib91
  article-title: Isolating individual trees in a closed coniferous forest using small footprint lidar data
  publication-title: Int. J. Rem. Sens.
– volume: 5
  year: 2022
  ident: bib40
  article-title: The unseen effects of deforestation: biophysical effects on climate
  publication-title: Front. For. Glob. Change
– volume: 94
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib44
  article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 13
  start-page: 1571
  year: 2016
  end-page: 1585
  ident: bib94
  article-title: Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries
  publication-title: Biogeosciences
– start-page: 350
  year: 2008
  end-page: 355
  ident: bib53
  article-title: Individual tree detection based on densities of high points of high resolution airborne LiDAR
  publication-title: GEOBIA, 2008 — Pixels, Objects, Intelligence. Presented at the GEOgraphic Object Based Image Analysis for the 21st Century
– volume: 66
  start-page: 28
  year: 2011
  end-page: 37
  ident: bib88
  article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 10
  start-page: 694
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib22
  article-title: Measuring tree height with remote sensing—a comparison of photogrammetric and LiDAR data with different field measurements
  publication-title: Forests
  doi: 10.3390/f10080694
– volume: 64
  start-page: 561
  year: 2009
  ident: 10.1016/j.rsase.2024.101178_bib65
  article-title: 3D segmentation of single trees exploiting full waveform LIDAR data
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.04.002
– volume: 14
  start-page: 3480
  year: 2022
  ident: 10.1016/j.rsase.2024.101178_bib71
  article-title: Cross-comparison of individual tree detection methods using low and high pulse density airborne laser scanning data
  publication-title: Rem. Sens.
  doi: 10.3390/rs14143480
– volume: 310
  start-page: 994
  year: 2013
  ident: 10.1016/j.rsase.2024.101178_bib93
  article-title: Amazon palm biomass and allometry
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.09.045
– volume: 255
  start-page: 2416
  year: 2008
  ident: 10.1016/j.rsase.2024.101178_bib28
  article-title: Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park
  publication-title: For. Ecol. Manag., Large-Scale Experimentation and Oak Regeneration
– volume: 2
  year: 2021
  ident: 10.1016/j.rsase.2024.101178_bib32
  article-title: Improved forest management as a natural climate solution: a review
  publication-title: Ecol. Solut. Evid.
  doi: 10.1002/2688-8319.12090
– volume: 13
  start-page: 1571
  issue: 5
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib94
  article-title: Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-1571-2016
– volume: 8
  start-page: 7
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib68
  article-title: Direct measurement of tree height provides different results on the assessment of LiDAR accuracy
  publication-title: Forests
  doi: 10.3390/f8010007
– volume: 7
  start-page: 6770
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib27
  article-title: Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07200-0
– volume: 72
  start-page: 1287
  year: 2006
  ident: 10.1016/j.rsase.2024.101178_bib24
  article-title: The individual tree crown approach applied to ikonos images of a coniferous plantation area
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.72.11.1287
– volume: 85
  start-page: 27
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib78
  article-title: Comparative testing of single-tree detection algorithms under different types of forest
  publication-title: For. Int. J. For. Res.
– volume: 4
  start-page: 377
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib76
  article-title: Tree species detection accuracies using discrete point lidar and airborne waveform lidar
  publication-title: Rem. Sens.
  doi: 10.3390/rs4020377
– volume: 41
  start-page: 1649
  year: 2011
  ident: 10.1016/j.rsase.2024.101178_bib77
  article-title: Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations
  publication-title: Can. J. For. Res.
  doi: 10.1139/x11-083
– volume: 11
  start-page: 223
  year: 2020
  ident: 10.1016/j.rsase.2024.101178_bib49
  article-title: Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in northern Japan
  publication-title: Forests
  doi: 10.3390/f11020223
– volume: 76
  start-page: 701
  year: 2010
  ident: 10.1016/j.rsase.2024.101178_bib26
  article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.76.6.701
– volume: 12
  start-page: 1078
  year: 2020
  ident: 10.1016/j.rsase.2024.101178_bib45
  article-title: Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features
  publication-title: Rem. Sens.
  doi: 10.3390/rs12071078
– volume: 6
  start-page: 3899
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib72
  article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds
  publication-title: Forests
  doi: 10.3390/f6113899
– start-page: 345
  year: 2005
  ident: 10.1016/j.rsase.2024.101178_bib25
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
– volume: 42
  start-page: 554
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib69
  article-title: Imputation of individual longleaf pine (Pinus palustris mill.) tree attributes from field and LiDAR data
  publication-title: Can. J. Rem. Sens.
  doi: 10.1080/07038992.2016.1196582
– volume: 13
  start-page: 1164
  year: 2022
  ident: 10.1016/j.rsase.2024.101178_bib70
  article-title: Treetop : a Shiny‐based application and R package for extracting forest information from LiDAR data for ecologists and conservationists
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13830
– volume: 70
  start-page: 351
  year: 2004
  ident: 10.1016/j.rsase.2024.101178_bib81
  article-title: Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.70.3.351
– volume: 146
  start-page: 252
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib13
  article-title: Assessing the biomass of shrubs typical of Mediterranean pre-forest communities
  publication-title: Plant Biosyst. - Int. J. Deal. Asp. Plant Biol.
– volume: 8
  start-page: 340
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib50
  article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest
  publication-title: Forests
  doi: 10.3390/f8090340
– volume: 93
  start-page: 439
  year: 2018
  ident: 10.1016/j.rsase.2024.101178_bib29
  article-title: Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12351
– volume: 7
  start-page: 7892
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib89
  article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory
  publication-title: Rem. Sens.
  doi: 10.3390/rs70607892
– volume: 13
  start-page: 322
  year: 2021
  ident: 10.1016/j.rsase.2024.101178_bib39
  article-title: A density-based algorithm for the detection of individual trees from LiDAR data
  publication-title: Rem. Sens.
  doi: 10.3390/rs13020322
– volume: 0
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib46
  article-title: Forest inventory sensivity to UAS-based image processing algorithms
  publication-title: Ann. For. Res.
  doi: 10.15287/afr.2018.1282
– volume: 11
  start-page: 64
  year: 1998
  ident: 10.1016/j.rsase.2024.101178_bib7
  article-title: Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s001380050091
– year: 2001
  ident: 10.1016/j.rsase.2024.101178_bib42
  article-title: Estimation of individual tree heights using LIDAR remote sensing
– volume: 23
  start-page: 269
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib48
  article-title: Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones
  publication-title: Wetl. Ecol. Manag.
  doi: 10.1007/s11273-014-9379-x
– volume: 24
  start-page: 1465
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib17
  article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States
  publication-title: Global Ecol. Biogeogr.
  doi: 10.1111/geb.12371
– start-page: 1
  year: 2009
  ident: 10.1016/j.rsase.2024.101178_bib64
  article-title: Tree crown delineation from high resolution airborne lidar based on densities of high points
– volume: 123
  year: 2023
  ident: 10.1016/j.rsase.2024.101178_bib9
  article-title: Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  year: 2022
  ident: 10.1016/j.rsase.2024.101178_bib40
  article-title: The unseen effects of deforestation: biophysical effects on climate
  publication-title: Front. For. Glob. Change
  doi: 10.3389/ffgc.2022.756115
– volume: 7
  start-page: 7892
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib90
  article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory
  publication-title: Rem. Sens.
  doi: 10.3390/rs70607892
– volume: 37
  start-page: 71
  year: 2002
  ident: 10.1016/j.rsase.2024.101178_bib63
  article-title: Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(02)00121-7
– volume: 251
  year: 2020
  ident: 10.1016/j.rsase.2024.101178_bib66
  article-title: lidR: an R package for analysis of Airborne Laser Scanning (ALS) data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112061
– volume: 11
  start-page: 1263
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib86
  article-title: Mean shift segmentation assessment for individual forest tree delineation from airborne lidar data
  publication-title: Rem. Sens.
  doi: 10.3390/rs11111263
– volume: 147
  start-page: 132
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib83
  article-title: Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– volume: 121
  start-page: 210
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib19
  article-title: 3-D mapping of a multi-layered Mediterranean forest using ALS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.020
– volume: 14
  start-page: 16
  year: 2022
  ident: 10.1016/j.rsase.2024.101178_bib5
  article-title: Methodology of calculating the number of trees based on ALS data for forestry applications for the area of samławki forest district
  publication-title: Rem. Sens.
  doi: 10.3390/rs14010016
– volume: 4
  start-page: 950
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib34
  article-title: An international comparison of individual tree detection and extraction using airborne laser scanning
  publication-title: Rem. Sens.
  doi: 10.3390/rs4040950
– volume: 94
  start-page: 1
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib44
  article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.014
– volume: 13
  start-page: 1028
  year: 2021
  ident: 10.1016/j.rsase.2024.101178_bib51
  article-title: Individual tree detection using UAV-lidar and UAV-SfM data: a tutorial for beginners
  publication-title: Open Geosci.
  doi: 10.1515/geo-2020-0290
– volume: 22
  start-page: 123
  year: 2006
  ident: 10.1016/j.rsase.2024.101178_bib6
  article-title: Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama
  publication-title: J. Trop. Ecol.
  doi: 10.1017/S0266467405003019
– volume: 43
  start-page: 1
  year: 2009
  ident: 10.1016/j.rsase.2024.101178_bib74
  article-title: Forest resilience, biodiversity, and climate change
  publication-title: Secr. Conv. Biol. Divers. Montr. Tech. Ser. No
– volume: 6
  start-page: 3882
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib54
  article-title: Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest
  publication-title: Forests
  doi: 10.3390/f6113882
– volume: 40
  start-page: 141
  year: 2008
  ident: 10.1016/j.rsase.2024.101178_bib55
  article-title: Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2007.00353.x
– volume: 73
  start-page: 103
  year: 2000
  ident: 10.1016/j.rsase.2024.101178_bib85
  article-title: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00101-2
– volume: 71
  start-page: 1071
  year: 2005
  ident: 10.1016/j.rsase.2024.101178_bib58
  article-title: Effects of forest environment and survey protocol on GPS accuracy
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.71.9.1071
– volume: 34
  start-page: S338
  year: 2008
  ident: 10.1016/j.rsase.2024.101178_bib18
  article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data
  publication-title: Can. J. Rem. Sens.
  doi: 10.5589/m08-055
– volume: 10
  start-page: 161
  year: 2018
  ident: 10.1016/j.rsase.2024.101178_bib23
  article-title: Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian savannas
  publication-title: Rem. Sens.
  doi: 10.3390/rs10020161
– start-page: 178
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib52
  article-title: Detecting multi-layered forest stands using high density airborne LiDAR data
  publication-title: GI_Forum
  doi: 10.1553/giscience2015s178
– volume: 78
  start-page: 75
  year: 2012
  ident: 10.1016/j.rsase.2024.101178_bib41
  article-title: A new method for segmenting individual trees from the lidar point cloud
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.78.1.75
– volume: 12
  start-page: 425
  year: 2007
  ident: 10.1016/j.rsase.2024.101178_bib37
  article-title: Detection of individual trees and estimation of tree height using LiDAR data
  publication-title: J. For. Res.
  doi: 10.1007/s10310-007-0041-9
– volume: 33
  start-page: 98
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib79
  article-title: PTrees: a point-based approach to forest tree extraction from lidar data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 148
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib30
  article-title: Adaptive mean shift-based identification of individual trees using airborne LiDAR data
  publication-title: Rem. Sens.
  doi: 10.3390/rs9020148
– volume: 39
  start-page: 1080
  year: 2009
  ident: 10.1016/j.rsase.2024.101178_bib3
  article-title: Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing
  publication-title: Can. J. For. Res.
  doi: 10.1139/X09-030
– volume: 32
  start-page: 5827
  year: 2011
  ident: 10.1016/j.rsase.2024.101178_bib38
  article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2010.507790
– volume: 52
  start-page: 7619
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib80
  article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2014.2315649
– volume: 80
  start-page: 863
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib35
  article-title: Generating pit-free canopy height models from airborne lidar
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.80.9.863
– volume: 183
  start-page: 318
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib20
  article-title: Lidar detection of individual tree size in tropical forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.05.028
– volume: 54
  start-page: 5011
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib82
  article-title: International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2016.2543225
– year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib8
– year: 2001
  ident: 10.1016/j.rsase.2024.101178_bib67
– volume: 5
  start-page: 86
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib15
  article-title: Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species
  publication-title: Ecosys. Health Sustain.
  doi: 10.1080/20964129.2019.1591169
– volume: 475
  year: 2020
  ident: 10.1016/j.rsase.2024.101178_bib21
  article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2020.118397
– volume: 72
  start-page: 923
  year: 2006
  ident: 10.1016/j.rsase.2024.101178_bib10
  article-title: Isolating individual trees in a savanna woodland using small footprint lidar data
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.72.8.923
– volume: 51
  start-page: 1093
  year: 2021
  ident: 10.1016/j.rsase.2024.101178_bib14
  article-title: Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2020-0433
– start-page: 350
  year: 2008
  ident: 10.1016/j.rsase.2024.101178_bib53
  article-title: Individual tree detection based on densities of high points of high resolution airborne LiDAR
– volume: 66
  start-page: 28
  year: 2011
  ident: 10.1016/j.rsase.2024.101178_bib88
  article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.003
– volume: 14
  start-page: 6950
  year: 2022
  ident: 10.1016/j.rsase.2024.101178_bib87
  article-title: Error analysis of measuring the diameter, tree height, and volume of standing tree using electronic theodolite
  publication-title: Sustainability
  doi: 10.3390/su14126950
– volume: 35
  start-page: 7199
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib91
  article-title: Isolating individual trees in a closed coniferous forest using small footprint lidar data
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2014.967886
– volume: 30
  start-page: 3843
  year: 2009
  ident: 10.1016/j.rsase.2024.101178_bib1
  article-title: Delineating tree crowns from airborne laser scanning point cloud data using Delaunay triangulation
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431160902842318
– volume: 26
  start-page: 791
  year: 2015
  ident: 10.1016/j.rsase.2024.101178_bib73
  article-title: Drone remote sensing for forestry research and practices
  publication-title: J. For. Res.
  doi: 10.1007/s11676-015-0088-y
– volume: 54
  start-page: 4190
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib57
  article-title: A hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2016.2538203
– volume: 11
  start-page: 1086
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib2
  article-title: A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests
  publication-title: Rem. Sens.
  doi: 10.3390/rs11091086
– volume: 6
  start-page: 3475
  year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib75
  article-title: Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries
  publication-title: Rem. Sens.
  doi: 10.3390/rs6043475
– volume: 7
  start-page: 1236
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib16
  article-title: Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12575
– volume: 38
  start-page: 2392
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib56
  article-title: Determining tree height and crown diameter from high-resolution UAV imagery
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2016.1264028
– volume: 163
  year: 2019
  ident: 10.1016/j.rsase.2024.101178_bib43
  article-title: A hybrid method for segmenting individual trees from airborne lidar data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104871
– volume: 23
  start-page: 177
  year: 2017
  ident: 10.1016/j.rsase.2024.101178_bib31
  article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.13388
– year: 2021
  ident: 10.1016/j.rsase.2024.101178_bib61
– year: 2008
  ident: 10.1016/j.rsase.2024.101178_bib33
– volume: 70
  start-page: 589
  year: 2004
  ident: 10.1016/j.rsase.2024.101178_bib62
  article-title: Seeing the trees in the forest
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.70.5.589
– volume: 31
  start-page: 832
  year: 2001
  ident: 10.1016/j.rsase.2024.101178_bib60
  article-title: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods
  publication-title: Can. J. For. Res.
  doi: 10.1139/x01-013
– volume: 8
  start-page: 333
  year: 2016
  ident: 10.1016/j.rsase.2024.101178_bib92
  article-title: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data
  publication-title: Rem. Sens.
  doi: 10.3390/rs8040333
– start-page: 1055
  year: 2020
  ident: 10.1016/j.rsase.2024.101178_bib59
  article-title: Application of tree detection methods over lidar data for forest volume estimation
  publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci.
– year: 2014
  ident: 10.1016/j.rsase.2024.101178_bib4
  article-title: Individual tree delineation in deciduous forest areas with LiDAR point clouds
  publication-title: Can. J. Rem. Sens.
  doi: 10.1080/07038992.2014.943700
– volume: 17
  start-page: 790
  year: 1995
  ident: 10.1016/j.rsase.2024.101178_bib11
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.400568
– volume: 72
  start-page: 357
  year: 2006
  ident: 10.1016/j.rsase.2024.101178_bib36
  article-title: Detection of individual tree crowns in airborne lidar data
  publication-title: Photogramm. Eng. Rem. Sens.
  doi: 10.14358/PERS.72.4.357
SSID ssj0001651119
Score 2.2928607
Snippet The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 101178
SubjectTerms Airborne laser scanner (ALS)
algorithms
canopy height
Chir pine forests
data collection
decision making
environment
forest management
Forest structure
forests
Individual tree detection
ITD algorithms
LiDAR
Local maxima
Pinus roxburghii
species
tree crown
trees
Title Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest
URI https://dx.doi.org/10.1016/j.rsase.2024.101178
https://www.proquest.com/docview/3153598869
Volume 34
WOSCitedRecordID wos001218798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-9385
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651119
  issn: 2352-9385
  databaseCode: AIEXJ
  dateStart: 20150701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEICtssuBC1oeK5aXjIQQqKTKO_GxoK4AVaUSrdSb5cTONtU27SZptdo7P4H_yzh2HlCBlgOXJJq2TtT55IxnPDMIvSbchaWxFxvCDbnhctszwMogBo85M_0oSjhRzSaCySRcLMi01_tR58LsL4MsC6-vyfa_qhpkoGyZOvsP6m4GBQFcg9LhCGqH460UP-2kArS1vFVpiCb5Ssai-1yUQncKl95zcbHWiUgguLzY5Gm5XBf9XeVNGI6_9eVu0ipLcJnm_ak2T-G8K_q5jtekqXQzwP3rqFVd-1sAEgLukVWjdcPmjY-HCeV4nTEYv8WtKJiqczBasZtaPAd6l8qjvU4bvK-0bazc2up6L0_DD7zr3rC7u2KqWdAGC9EgjurrMxCHsoN3gHJHrAZ5AXbAQI4pZZbqFPRrxe3JV3o-H4_pbLSYvdleGbIZmQza684sd9CxHXgEJsvj4efR4kvrvPPBTq2axjSPUle0qvYOHtz6T1bPb-__yqiZnaD7ejWCh4qiB6gnsofodNQmP8KHevYvHqHvHbRwixbeJLhFC0u0cIMWBrRwFy3cooUrtDCghSVaMAiWaGGJFn5bgYVbsN5hhdVjND8fzT5-MnQbDyO2Q780HAJrAuFGls9g_St4whPTiv1A-FbssMSWsWFYl9ih8KPYJKbrJIEt6zxGJje5Zzqn6CjbZOIJwtwJIitiIRMRcU3bJ5yFFos58QInEHZ8ht7XfzPdqmottN7GuKKVVqjUClVaOUN-rQqqDU5lSFJg6e8_fFUrjsJ0LGNsLBObXUEdsCA8EoY-eXqL7zxD91rmn6OjMt-JF-huvC_TIn-pqfsJ0aGvbQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+individual+tree+detection+and+segmentation+algorithms+using+ALS+data+in+Chir+Pine+%28Pinus+roxburghii%29+forest&rft.jtitle=Remote+sensing+applications&rft.au=Saeed%2C+Tahir&rft.au=Hussain%2C+Ejaz&rft.au=Ullah%2C+Sami&rft.au=Iqb%C4%81l%2C+J%C4%81v%C4%ABd&rft.date=2024-04-01&rft.issn=2352-9385&rft.eissn=2352-9385&rft_id=info:doi/10.1016%2Fj.rsase.2024.101178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9385&client=summon