Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest
The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically det...
Saved in:
| Published in: | Remote sensing applications Vol. 34; p. 101178 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2024
|
| Subjects: | |
| ISSN: | 2352-9385, 2352-9385 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies. |
|---|---|
| AbstractList | The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies. The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research for more than two decades. Nevertheless, there is a notable research gap in the development of robust algorithms capable of automatically detecting trees of different species, ages, and varied crown sizes in dense forest environments. In this study, we conducted a comprehensive evaluation of six different individual tree detection (ITD) algorithms using airborne LiDAR data in Chir Pine (Pinus roxburghii) forests. This research represents one of the pioneering efforts in applying ITD algorithms to Chir Pine forests using ALS data. We categorized ITD routines into two groups: those reliant on local maxima as treetops and initial seeds for crown delineation, and those that do not require explicit treetop identification. To assess accuracy, we developed a special Individual Tree Matching (ITM) algorithm, enabling the matching of LiDAR-detected trees with 284 reference trees measured in the field. Our analysis involved various combinations of filtering fixed window sizes and adaptive window sizes applied to the point cloud, unsmoothed, and smoothed canopy height model (CHM). Our results highlighted the effectiveness of the 3 × 3m fixed window size method on unsmoothed CHM, achieving an overall F-score of 0.65 and a tree detection rate of 86%. Additionally, the Dalponte 2016 method proved superior for crown segmentation using identified treetops, consistently measuring mean crown radii within 0.5 m of reference field trees. Among the methods not relying on treetops, the adaptive mean shift algorithm (AMS3D) delivered strong performance, boasting an overall F-score of 0.67 and mean crown radii within 0.1 m. Our study revealed a high correlation between LiDAR-detected tree heights and field-measured tree heights across all evaluated methods. Overall, our findings underscore the potential of ITD algorithms in enhancing forest attribute measurement accuracy and facilitating climate-responsive forest management strategies. |
| ArticleNumber | 101178 |
| Author | Ullah, Sami Yousaf, Mohsin Saeed, Tahir Iqbal, Javed Atif, Salman Hussain, Ejaz |
| Author_xml | – sequence: 1 givenname: Tahir surname: Saeed fullname: Saeed, Tahir email: tsaeed.phd20igis@student.nust.edu.pk organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan – sequence: 2 givenname: Ejaz surname: Hussain fullname: Hussain, Ejaz organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan – sequence: 3 givenname: Sami orcidid: 0000-0002-6997-137X surname: Ullah fullname: Ullah, Sami organization: Department of Forestry and Range Management, Kohsar University Murree, Murree 47150, Punjab, Pakistan – sequence: 4 givenname: Javed orcidid: 0000-0002-9167-059X surname: Iqbal fullname: Iqbal, Javed organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan – sequence: 5 givenname: Salman orcidid: 0000-0003-0189-3827 surname: Atif fullname: Atif, Salman organization: Institute of Geographical Information Systems, National University of Sciences & Technology, Islamabad 44000, Pakistan – sequence: 6 givenname: Mohsin surname: Yousaf fullname: Yousaf, Mohsin organization: Independent Researcher, Pakistan |
| BookMark | eNp9kE1PAjEQhhuDiYj8Ai894mGxH-zXwQMhfiUkkqjnprSzULLbYrtL9Af4vy2sB09eZiYz7zuTeS7RwDoLCF1TMqWEZre7qQ8ywJQRNjt2aF6coSHjKUtKXqSDP_UFGoewIyTaUkppOUTfK_CV8420CjAcZN3J1jiLXYWN1eZgdCdr3HoArKEFdRpKq3GATQO27dWy3jhv2m0TcBeM3eD58hVr2cq4BC-2xuOVsYAnMXYBe_e57vxma8wNjrchtFfovJJ1gPFvHqH3h_u3xVOyfHl8XsyXiWJF1ia8JGkOszXNJKM56EpXhKosh4wqLitG8iy-n7ICsrUiJZnxKmeUcLYmmuiU8BGa9Hv33n108bBoTFBQ19KC64LgNOVpWRRZGaW8lyrvQvBQib03jfRfghJx5C524sRdHLmLnnt03fUuiF8cDHgRlIHIVhsf4QntzL_-H5L-j3Y |
| Cites_doi | 10.3390/f10080694 10.1016/j.isprsjprs.2009.04.002 10.3390/rs14143480 10.1016/j.foreco.2013.09.045 10.1002/2688-8319.12090 10.5194/bg-13-1571-2016 10.3390/f8010007 10.1038/s41598-017-07200-0 10.14358/PERS.72.11.1287 10.3390/rs4020377 10.1139/x11-083 10.3390/f11020223 10.14358/PERS.76.6.701 10.3390/rs12071078 10.3390/f6113899 10.1080/07038992.2016.1196582 10.1111/2041-210X.13830 10.14358/PERS.70.3.351 10.3390/f8090340 10.1111/brv.12351 10.3390/rs70607892 10.3390/rs13020322 10.15287/afr.2018.1282 10.1007/s001380050091 10.1007/s11273-014-9379-x 10.1111/geb.12371 10.3389/ffgc.2022.756115 10.1016/S0168-1699(02)00121-7 10.1016/j.rse.2020.112061 10.3390/rs11111263 10.1016/j.isprsjprs.2018.11.008 10.1016/j.rse.2012.01.020 10.3390/rs14010016 10.3390/rs4040950 10.1016/j.isprsjprs.2014.03.014 10.1515/geo-2020-0290 10.1017/S0266467405003019 10.3390/f6113882 10.1111/j.1744-7429.2007.00353.x 10.1016/S0034-4257(00)00101-2 10.14358/PERS.71.9.1071 10.5589/m08-055 10.3390/rs10020161 10.1553/giscience2015s178 10.14358/PERS.78.1.75 10.1007/s10310-007-0041-9 10.3390/rs9020148 10.1139/X09-030 10.1080/01431161.2010.507790 10.1109/TGRS.2014.2315649 10.14358/PERS.80.9.863 10.1016/j.rse.2016.05.028 10.1109/TGRS.2016.2543225 10.1080/20964129.2019.1591169 10.1016/j.foreco.2020.118397 10.14358/PERS.72.8.923 10.1139/cjfr-2020-0433 10.1016/j.isprsjprs.2010.08.003 10.3390/su14126950 10.1080/01431161.2014.967886 10.1080/01431160902842318 10.1007/s11676-015-0088-y 10.1109/TGRS.2016.2538203 10.3390/rs11091086 10.3390/rs6043475 10.1111/2041-210X.12575 10.1080/01431161.2016.1264028 10.1016/j.compag.2019.104871 10.1111/gcb.13388 10.14358/PERS.70.5.589 10.1139/x01-013 10.3390/rs8040333 10.1080/07038992.2014.943700 10.1109/34.400568 10.14358/PERS.72.4.357 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rsase.2024.101178 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2352-9385 |
| ExternalDocumentID | 10_1016_j_rsase_2024_101178 S2352938524000429 |
| GroupedDBID | --M 0R~ 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM KQ8 O9- OAUVE ROL SPC SPCBC SSE SSJ SSZ T5K ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG 7S9 L.6 |
| ID | FETCH-LOGICAL-c286t-39057e4b16a217edfdf01c67e61c3af2076011528e6bc09043f721032b0d0d503 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001218798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-9385 |
| IngestDate | Sun Sep 28 00:47:42 EDT 2025 Sat Nov 29 03:02:11 EST 2025 Sat Jun 01 15:42:40 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Individual tree detection ITD algorithms Forest structure LiDAR Chir pine forests Airborne laser scanner (ALS) Local maxima |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-39057e4b16a217edfdf01c67e61c3af2076011528e6bc09043f721032b0d0d503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0189-3827 0000-0002-6997-137X 0000-0002-9167-059X |
| PQID | 3153598869 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153598869 crossref_primary_10_1016_j_rsase_2024_101178 elsevier_sciencedirect_doi_10_1016_j_rsase_2024_101178 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing applications |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Burman, Soininen (bib8) 2015 Latella, Sola, Camporeale (bib39) 2021; 13 Zhang, Zhou, Qiu (bib90) 2015; 7 Sheng (bib67) 2001 Vastaranta, Saarinen, Kankare, Holopainen, Kaartinen, Hyyppä, Hyyppä (bib75) 2014; 6 Goldbergs, Maier, Levick, Edwards (bib23) 2018; 10 Bater, Coops, Gergel, LeMay, Collins (bib3) 2009; 39 Rahman, Gorte (bib64) 2009 Silva, Hudak, Vierling, Loudermilk, O'Brien, Hiers, Jack, Gonzalez-Benecke, Lee, Falkowski, Khosravipour (bib69) 2016; 42 Mizanur Rahman, Nabiul Islam Khan, Fazlul Hoque, Ahmed (bib48) 2015; 23 Lim, Treitz, Groot, St-Onge (bib42) 2001 Lawrence, Coe, Walker, Verchot, Vandecar (bib40) 2022; 5 Dalponte, Coomes (bib16) 2016; 7 Bohlman, O'Brien (bib6) 2006; 22 St-Onge, Audet, Bégin (bib72) 2015; 6 Wang, Gong, Biging (bib81) 2004; 70 Thompson, Mackey, McNulty, Mosseler (bib74) 2009; 43 Popescu, Wynne (bib62) 2004; 70 Larsen, Eriksson, Descombes, Perrin, Brandtberg, Gougeon (bib38) 2011; 32 Roussel, Auty, Coops, Tompalski, Goodbody, Meador, Bourdon, De Boissieu, Achim (bib66) 2020; 251 Mund, Wilke, Körner, Schultz (bib52) 2015 Pirotti, Paterno, Pividori (bib59) 2020 Sparks, Corrao, Smith (bib71) 2022; 14 Popescu, Wynne, Nelson (bib63) 2002; 37 Ma, Pang, Wang, Liang, Chen, Lu, Weinacker, Koch (bib45) 2020; 12 Plowright, Roussel (bib61) 2021 M.Z.A. Rahman (bib53) 2008 Corona, Pasta, Giardina, La Mantia (bib13) 2012; 146 Pitkänen (bib60) 2001; 31 Zhen, Quackenbush, Zhang (bib92) 2016; 8 Heurich (bib28) 2008; 255 Falkowski, Smith, Gessler, Hudak, Vierling, Evans (bib18) 2008; 34 Ferraz, Saatchi, Mallet, Meyer (bib20) 2016; 183 Reitberger, Schnörr, Krzystek, Stilla (bib65) 2009; 64 Brandtberg, Walter (bib7) 1998; 11 Moe, Owari, Furuya, Hiroshima (bib49) 2020; 11 Vega, Hamrouni, El Mokhtari, Morel, Bock, Renaud, Bouvier, Durrieu (bib79) 2014; 33 Khosravipour, Skidmore, Isenburg, Wang, Hussin (bib35) 2014; 80 Ota, Ogawa, Shimizu, Kajisa, Mizoue, Yoshida, Takao, Hirata, Furuya, Sano, Sokh, Ma, Ito, Toriyama, Monda, Saito, Kiyono, Chann, Ket (bib54) 2015; 6 Piedallu, Gégout (bib58) 2005; 71 Ploton, Barbier, Takoudjou Momo, Réjou-Méchain, Boyemba Bosela, Chuyong, Dauby, Droissart, Fayolle, Goodman, Henry (bib94) 2016; 13 Sibona, Vitali, Meloni, Caffo, Dotta, Lingua, Motta, Garbarino (bib68) 2017; 8 Chen, Baldocchi, Gong, Kelly (bib10) 2006; 72 Maturbong, Wing, Strimbu, Burnett (bib46) 2019; 0 Palace, Keller, Asner, Hagen, Braswell (bib55) 2008; 40 Gougeon, Leckie (bib24) 2006; 72 Duncanson, Dubayah, Enquist (bib17) 2015; 24 Guo, Li, Yu, Alvarez (bib26) 2010; 76 Koch, Heyder, Weinacker (bib36) 2006; 72 Vaughn, Moskal, Turnblom (bib76) 2012; 4 Cheng (bib11) 1995; 17 Hamraz, Contreras, Zhang (bib27) 2017; 7 Mohan, Silva, Klauberg, Jat, Catts, Cardil, Hudak, Dia (bib50) 2017; 8 Ferraz, Bretar, Jacquemoud, Gonçalves, Pereira, Tomé, Soares (bib19) 2012; 121 Ganz, Käber, Adler (bib22) 2019; 10 Lu, Guo, Li, Flanagan (bib44) 2014; 94 Yu, Hyyppä, Vastaranta, Holopainen, Viitala (bib88) 2011; 66 Xiao, Zaforemska, Smigaj, Wang, Gaulton (bib86) 2019; 11 Bian, Zou, Shu, Yu (bib4) 2014 Panagiotidis, Abdollahnejad, Surový, Chiteculo (bib56) 2017; 38 Ferreira, Almeida, Papa, Minervino, Veras, Formighieri, Santos, Ferreira, Figueiredo, Ferreira (bib21) 2020; 475 Kaartinen, Hyyppä (bib33) 2008 Wallace, Lucieer, Watson (bib80) 2014; 52 Creasy, Tinkham, Hoffman, Vogeler (bib14) 2021; 51 Cao, Ball, Coomes, Steinmeier, Knapp, Wilkes, Disney, Calders, Burt, Lin, Jackson (bib9) 2023; 123 Kaartinen, Hyyppä, Yu, Vastaranta, Hyyppä, Kukko, Holopainen, Heipke, Hirschmugl, Morsdorf, Næsset, Pitkänen, Popescu, Solberg, Wolf, Wu (bib34) 2012; 4 Yao, Wang, Zhang, Xiong (bib87) 2022; 14 Aubry-Kientz, Dutrieux, Ferraz, Saatchi, Hamraz, Williams, Coomes, Piboule, Vincent (bib2) 2019; 11 Daba, Soromessa (bib15) 2019; 5 Vauhkonen, MehtÄtalo, Packalén (bib77) 2011; 41 Liu, Lim, Shen, Yebra (bib43) 2019; 163 Wang, Hyyppä, Liang, Kaartinen, Yu, Lindberg, Holmgren, Qin, Mallet, Ferraz, Torabzadeh, Morsdorf, Zhu, Liu, Alho (bib82) 2016; 54 Alexander (bib1) 2009; 30 Goodman, Phillips, del Castillo Torres, Freitas, Cortese, Monteagudo, Baker (bib93) 2013; 310 Jucker, Caspersen, Chave, Antin, Barbier, Bongers, Dalponte, van Ewijk, Forrester, Haeni, Higgins, Holdaway, Iida, Lorimer, Marshall, Momo, Moncrieff, Ploton, Poorter, Rahman, Schlund, Sonké, Sterck, Trugman, Usoltsev, Vanderwel, Waldner, Wedeux, Wirth, Wöll, Woods, Xiang, Zimmermann, Coomes (bib31) 2017; 23 Tang, Shao (bib73) 2015; 26 Paris, Valduga, Bruzzone (bib57) 2016; 54 Zhao, Pang, Li, Liu (bib91) 2014; 35 Zhang, Zhou, Qiu (bib89) 2015; 7 Wulder, Niemann, Goodenough (bib85) 2000; 73 Silva, Hudak, Vierling, Valbuena, Cardil, Mohan, Almeida, Broadbent, Almeyda Zambrano, Wilkinson, Sharma, Drake, Medley, Vogel, Prata, Atkins, Hamamura, Johnson, Klauberg (bib70) 2022; 13 Vauhkonen, Ene, Gupta, Heinzel, Holmgren, Pitkänen, Solberg, Wang, Weinacker, Hauglin, Lien, Packalén, Gobakken, Koch, Næsset, Tokola, Maltamo (bib78) 2012; 85 Goutte, Gaussier (bib25) 2005 Kwak, Lee, Lee, Biging, Gong (bib37) 2007; 12 Mohan, Leite, Broadbent, Wan Mohd Jaafar, Srinivasan, Bajaj, Dalla Corte, Do Amaral, Gopan, Saad, Muhmad Kamarulzaman, Prata, Llewelyn, Johnson, Doaemo, Bohlman, Almeyda Zambrano, Cardil (bib51) 2021; 13 Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (bib83) 2019; 147 Błaszczak-Bąk, Janicka, Kozakiewicz, Chudzikiewicz, Bąk (bib5) 2022; 14 Hu, Chen, Xu (bib30) 2017; 9 Li, Guo, Jakubowski, Kelly (bib41) 2012; 78 Hisano, Searle, Chen (bib29) 2018; 93 Kaarakka, Cornett, Domke, Ontl, Dee (bib32) 2021; 2 Wallace (10.1016/j.rsase.2024.101178_bib80) 2014; 52 Paris (10.1016/j.rsase.2024.101178_bib57) 2016; 54 Ferraz (10.1016/j.rsase.2024.101178_bib20) 2016; 183 Goutte (10.1016/j.rsase.2024.101178_bib25) 2005 Reitberger (10.1016/j.rsase.2024.101178_bib65) 2009; 64 Hamraz (10.1016/j.rsase.2024.101178_bib27) 2017; 7 Pirotti (10.1016/j.rsase.2024.101178_bib59) 2020 Sparks (10.1016/j.rsase.2024.101178_bib71) 2022; 14 Ferreira (10.1016/j.rsase.2024.101178_bib21) 2020; 475 Roussel (10.1016/j.rsase.2024.101178_bib66) 2020; 251 Wulder (10.1016/j.rsase.2024.101178_bib85) 2000; 73 Hisano (10.1016/j.rsase.2024.101178_bib29) 2018; 93 Larsen (10.1016/j.rsase.2024.101178_bib38) 2011; 32 Zhen (10.1016/j.rsase.2024.101178_bib92) 2016; 8 Zhang (10.1016/j.rsase.2024.101178_bib90) 2015; 7 Moe (10.1016/j.rsase.2024.101178_bib49) 2020; 11 Tang (10.1016/j.rsase.2024.101178_bib73) 2015; 26 Popescu (10.1016/j.rsase.2024.101178_bib62) 2004; 70 Zhang (10.1016/j.rsase.2024.101178_bib89) 2015; 7 Sibona (10.1016/j.rsase.2024.101178_bib68) 2017; 8 Ploton (10.1016/j.rsase.2024.101178_bib94) 2016; 13 Cheng (10.1016/j.rsase.2024.101178_bib11) 1995; 17 Duncanson (10.1016/j.rsase.2024.101178_bib17) 2015; 24 Sheng (10.1016/j.rsase.2024.101178_bib67) 2001 Vastaranta (10.1016/j.rsase.2024.101178_bib75) 2014; 6 Pitkänen (10.1016/j.rsase.2024.101178_bib60) 2001; 31 Wang (10.1016/j.rsase.2024.101178_bib82) 2016; 54 Koch (10.1016/j.rsase.2024.101178_bib36) 2006; 72 Dalponte (10.1016/j.rsase.2024.101178_bib16) 2016; 7 Corona (10.1016/j.rsase.2024.101178_bib13) 2012; 146 Brandtberg (10.1016/j.rsase.2024.101178_bib7) 1998; 11 Bohlman (10.1016/j.rsase.2024.101178_bib6) 2006; 22 M.Z.A. Rahman (10.1016/j.rsase.2024.101178_bib53) 2008 Zhao (10.1016/j.rsase.2024.101178_bib91) 2014; 35 Kaartinen (10.1016/j.rsase.2024.101178_bib33) 2008 Vauhkonen (10.1016/j.rsase.2024.101178_bib78) 2012; 85 Alexander (10.1016/j.rsase.2024.101178_bib1) 2009; 30 Li (10.1016/j.rsase.2024.101178_bib41) 2012; 78 Lawrence (10.1016/j.rsase.2024.101178_bib40) 2022; 5 Ferraz (10.1016/j.rsase.2024.101178_bib19) 2012; 121 Yao (10.1016/j.rsase.2024.101178_bib87) 2022; 14 Heurich (10.1016/j.rsase.2024.101178_bib28) 2008; 255 Guo (10.1016/j.rsase.2024.101178_bib26) 2010; 76 Goodman (10.1016/j.rsase.2024.101178_bib93) 2013; 310 Mohan (10.1016/j.rsase.2024.101178_bib50) 2017; 8 Mund (10.1016/j.rsase.2024.101178_bib52) 2015 Popescu (10.1016/j.rsase.2024.101178_bib63) 2002; 37 Burman (10.1016/j.rsase.2024.101178_bib8) 2015 Maturbong (10.1016/j.rsase.2024.101178_bib46) 2019; 0 Silva (10.1016/j.rsase.2024.101178_bib70) 2022; 13 Gougeon (10.1016/j.rsase.2024.101178_bib24) 2006; 72 Falkowski (10.1016/j.rsase.2024.101178_bib18) 2008; 34 Błaszczak-Bąk (10.1016/j.rsase.2024.101178_bib5) 2022; 14 Ma (10.1016/j.rsase.2024.101178_bib45) 2020; 12 Mizanur Rahman (10.1016/j.rsase.2024.101178_bib48) 2015; 23 Bater (10.1016/j.rsase.2024.101178_bib3) 2009; 39 Wang (10.1016/j.rsase.2024.101178_bib81) 2004; 70 Khosravipour (10.1016/j.rsase.2024.101178_bib35) 2014; 80 Lim (10.1016/j.rsase.2024.101178_bib42) 2001 Vaughn (10.1016/j.rsase.2024.101178_bib76) 2012; 4 Daba (10.1016/j.rsase.2024.101178_bib15) 2019; 5 Ota (10.1016/j.rsase.2024.101178_bib54) 2015; 6 Liu (10.1016/j.rsase.2024.101178_bib43) 2019; 163 Panagiotidis (10.1016/j.rsase.2024.101178_bib56) 2017; 38 Bian (10.1016/j.rsase.2024.101178_bib4) 2014 Kwak (10.1016/j.rsase.2024.101178_bib37) 2007; 12 Vega (10.1016/j.rsase.2024.101178_bib79) 2014; 33 Creasy (10.1016/j.rsase.2024.101178_bib14) 2021; 51 Wang (10.1016/j.rsase.2024.101178_bib83) 2019; 147 Silva (10.1016/j.rsase.2024.101178_bib69) 2016; 42 Jucker (10.1016/j.rsase.2024.101178_bib31) 2017; 23 Cao (10.1016/j.rsase.2024.101178_bib9) 2023; 123 Yu (10.1016/j.rsase.2024.101178_bib88) 2011; 66 Goldbergs (10.1016/j.rsase.2024.101178_bib23) 2018; 10 Chen (10.1016/j.rsase.2024.101178_bib10) 2006; 72 Kaarakka (10.1016/j.rsase.2024.101178_bib32) 2021; 2 Kaartinen (10.1016/j.rsase.2024.101178_bib34) 2012; 4 Lu (10.1016/j.rsase.2024.101178_bib44) 2014; 94 Mohan (10.1016/j.rsase.2024.101178_bib51) 2021; 13 Ganz (10.1016/j.rsase.2024.101178_bib22) 2019; 10 Hu (10.1016/j.rsase.2024.101178_bib30) 2017; 9 Xiao (10.1016/j.rsase.2024.101178_bib86) 2019; 11 St-Onge (10.1016/j.rsase.2024.101178_bib72) 2015; 6 Aubry-Kientz (10.1016/j.rsase.2024.101178_bib2) 2019; 11 Rahman (10.1016/j.rsase.2024.101178_bib64) 2009 Latella (10.1016/j.rsase.2024.101178_bib39) 2021; 13 Plowright (10.1016/j.rsase.2024.101178_bib61) 2021 Piedallu (10.1016/j.rsase.2024.101178_bib58) 2005; 71 Vauhkonen (10.1016/j.rsase.2024.101178_bib77) 2011; 41 Palace (10.1016/j.rsase.2024.101178_bib55) 2008; 40 Thompson (10.1016/j.rsase.2024.101178_bib74) 2009; 43 |
| References_xml | – volume: 78 start-page: 75 year: 2012 end-page: 84 ident: bib41 article-title: A new method for segmenting individual trees from the lidar point cloud publication-title: Photogramm. Eng. Rem. Sens. – volume: 22 start-page: 123 year: 2006 end-page: 136 ident: bib6 article-title: Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama publication-title: J. Trop. Ecol. – start-page: 1055 year: 2020 end-page: 1060 ident: bib59 article-title: Application of tree detection methods over lidar data for forest volume estimation publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. – volume: 70 start-page: 351 year: 2004 end-page: 357 ident: bib81 article-title: Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery publication-title: Photogramm. Eng. Rem. Sens. – volume: 183 start-page: 318 year: 2016 end-page: 333 ident: bib20 article-title: Lidar detection of individual tree size in tropical forests publication-title: Remote Sens. Environ. – volume: 37 start-page: 71 year: 2002 end-page: 95 ident: bib63 article-title: Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size publication-title: Comput. Electron. Agric. – volume: 251 year: 2020 ident: bib66 article-title: lidR: an R package for analysis of Airborne Laser Scanning (ALS) data publication-title: Remote Sens. Environ. – volume: 6 start-page: 3882 year: 2015 end-page: 3898 ident: bib54 article-title: Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest publication-title: Forests – volume: 310 start-page: 994 year: 2013 end-page: 1004 ident: bib93 article-title: Amazon palm biomass and allometry publication-title: For. Ecol. Manag. – volume: 85 start-page: 27 year: 2012 end-page: 40 ident: bib78 article-title: Comparative testing of single-tree detection algorithms under different types of forest publication-title: For. Int. J. For. Res. – volume: 24 start-page: 1465 year: 2015 end-page: 1475 ident: bib17 article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States publication-title: Global Ecol. Biogeogr. – volume: 7 start-page: 1236 year: 2016 end-page: 1245 ident: bib16 article-title: Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data publication-title: Methods Ecol. Evol. – volume: 7 start-page: 6770 year: 2017 ident: bib27 article-title: Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds publication-title: Sci. Rep. – volume: 475 year: 2020 ident: bib21 article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning publication-title: For. Ecol. Manag. – volume: 6 start-page: 3899 year: 2015 end-page: 3922 ident: bib72 article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests – start-page: 1 year: 2009 end-page: 2 ident: bib64 article-title: Tree crown delineation from high resolution airborne lidar based on densities of high points publication-title: Proceedings ISPRS Workshop Laserscanning – volume: 40 start-page: 141 year: 2008 end-page: 150 ident: bib55 article-title: Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties publication-title: Biotropica – year: 2001 ident: bib42 article-title: Estimation of individual tree heights using LIDAR remote sensing publication-title: Proceedings of the Twenty-Third Annual Canadian Symposium on Remote Sensing – volume: 26 start-page: 791 year: 2015 end-page: 797 ident: bib73 article-title: Drone remote sensing for forestry research and practices publication-title: J. For. Res. – volume: 4 start-page: 377 year: 2012 end-page: 403 ident: bib76 article-title: Tree species detection accuracies using discrete point lidar and airborne waveform lidar publication-title: Rem. Sens. – year: 2014 ident: bib4 article-title: Individual tree delineation in deciduous forest areas with LiDAR point clouds publication-title: Can. J. Rem. Sens. – volume: 146 start-page: 252 year: 2012 end-page: 257 ident: bib13 article-title: Assessing the biomass of shrubs typical of Mediterranean pre-forest communities publication-title: Plant Biosyst. - Int. J. Deal. Asp. Plant Biol. – volume: 80 start-page: 863 year: 2014 end-page: 872 ident: bib35 article-title: Generating pit-free canopy height models from airborne lidar publication-title: Photogramm. Eng. Rem. Sens. – volume: 6 start-page: 3475 year: 2014 end-page: 3491 ident: bib75 article-title: Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries publication-title: Rem. Sens. – volume: 8 start-page: 333 year: 2016 ident: bib92 article-title: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data publication-title: Rem. Sens. – volume: 8 start-page: 340 year: 2017 ident: bib50 article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest publication-title: Forests – volume: 64 start-page: 561 year: 2009 end-page: 574 ident: bib65 article-title: 3D segmentation of single trees exploiting full waveform LIDAR data publication-title: ISPRS J. Photogrammetry Remote Sens. – year: 2008 ident: bib33 article-title: EuroSDR/ISPRS Project, Commission II “Tree Extraction” – volume: 13 start-page: 322 year: 2021 ident: bib39 article-title: A density-based algorithm for the detection of individual trees from LiDAR data publication-title: Rem. Sens. – volume: 121 start-page: 210 year: 2012 end-page: 223 ident: bib19 article-title: 3-D mapping of a multi-layered Mediterranean forest using ALS data publication-title: Remote Sens. Environ. – volume: 0 year: 2019 ident: bib46 article-title: Forest inventory sensivity to UAS-based image processing algorithms publication-title: Ann. For. Res. – volume: 17 start-page: 790 year: 1995 end-page: 799 ident: bib11 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 73 start-page: 103 year: 2000 end-page: 114 ident: bib85 article-title: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery publication-title: Remote Sens. Environ. – volume: 31 start-page: 832 year: 2001 end-page: 844 ident: bib60 article-title: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods publication-title: Can. J. For. Res. – volume: 7 start-page: 7892 year: 2015 end-page: 7913 ident: bib90 article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory publication-title: Rem. Sens. – volume: 43 start-page: 1 year: 2009 end-page: 67 ident: bib74 article-title: Forest resilience, biodiversity, and climate change publication-title: Secr. Conv. Biol. Divers. Montr. Tech. Ser. No – volume: 71 start-page: 1071 year: 2005 end-page: 1078 ident: bib58 article-title: Effects of forest environment and survey protocol on GPS accuracy publication-title: Photogramm. Eng. Rem. Sens. – volume: 5 start-page: 86 year: 2019 end-page: 97 ident: bib15 article-title: Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species publication-title: Ecosys. Health Sustain. – volume: 14 start-page: 16 year: 2022 ident: bib5 article-title: Methodology of calculating the number of trees based on ALS data for forestry applications for the area of samławki forest district publication-title: Rem. Sens. – volume: 11 start-page: 64 year: 1998 end-page: 73 ident: bib7 article-title: Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis publication-title: Mach. Vis. Appl. – volume: 13 start-page: 1028 year: 2021 end-page: 1039 ident: bib51 article-title: Individual tree detection using UAV-lidar and UAV-SfM data: a tutorial for beginners publication-title: Open Geosci. – volume: 72 start-page: 923 year: 2006 end-page: 932 ident: bib10 article-title: Isolating individual trees in a savanna woodland using small footprint lidar data publication-title: Photogramm. Eng. Rem. Sens. – volume: 147 start-page: 132 year: 2019 end-page: 145 ident: bib83 article-title: Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 38 start-page: 2392 year: 2017 end-page: 2410 ident: bib56 article-title: Determining tree height and crown diameter from high-resolution UAV imagery publication-title: Int. J. Rem. Sens. – volume: 30 start-page: 3843 year: 2009 end-page: 3848 ident: bib1 article-title: Delineating tree crowns from airborne laser scanning point cloud data using Delaunay triangulation publication-title: Int. J. Rem. Sens. – volume: 70 start-page: 589 year: 2004 end-page: 604 ident: bib62 article-title: Seeing the trees in the forest publication-title: Photogramm. Eng. Rem. Sens. – volume: 13 start-page: 1164 year: 2022 end-page: 1176 ident: bib70 article-title: Treetop : a Shiny‐based application and R package for extracting forest information from LiDAR data for ecologists and conservationists publication-title: Methods Ecol. Evol. – volume: 11 start-page: 1263 year: 2019 ident: bib86 article-title: Mean shift segmentation assessment for individual forest tree delineation from airborne lidar data publication-title: Rem. Sens. – volume: 255 start-page: 2416 year: 2008 end-page: 2433 ident: bib28 article-title: Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park publication-title: For. Ecol. Manag., Large-Scale Experimentation and Oak Regeneration – volume: 34 start-page: S338 year: 2008 end-page: S350 ident: bib18 article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data publication-title: Can. J. Rem. Sens. – volume: 23 start-page: 269 year: 2015 end-page: 283 ident: bib48 article-title: Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones publication-title: Wetl. Ecol. Manag. – volume: 7 start-page: 7892 year: 2015 end-page: 7913 ident: bib89 article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory publication-title: Rem. Sens. – volume: 4 start-page: 950 year: 2012 end-page: 974 ident: bib34 article-title: An international comparison of individual tree detection and extraction using airborne laser scanning publication-title: Rem. Sens. – volume: 72 start-page: 1287 year: 2006 end-page: 1297 ident: bib24 article-title: The individual tree crown approach applied to ikonos images of a coniferous plantation area publication-title: Photogramm. Eng. Rem. Sens. – start-page: 178 year: 2015 end-page: 188 ident: bib52 article-title: Detecting multi-layered forest stands using high density airborne LiDAR data publication-title: GI_Forum – year: 2001 ident: bib67 article-title: Model-Based Conifer-Crown Surface Reconstruction from High-Resolution Aerial Images – volume: 10 start-page: 161 year: 2018 ident: bib23 article-title: Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian savannas publication-title: Rem. Sens. – volume: 23 start-page: 177 year: 2017 end-page: 190 ident: bib31 article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes publication-title: Global Change Biol. – volume: 2 year: 2021 ident: bib32 article-title: Improved forest management as a natural climate solution: a review publication-title: Ecol. Solut. Evid. – volume: 52 start-page: 7619 year: 2014 end-page: 7628 ident: bib80 article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 41 start-page: 1649 year: 2011 end-page: 1658 ident: bib77 article-title: Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations publication-title: Can. J. For. Res. – year: 2015 ident: bib8 article-title: TerraMatch User's Guide – volume: 32 start-page: 5827 year: 2011 end-page: 5852 ident: bib38 article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions publication-title: Int. J. Rem. Sens. – volume: 54 start-page: 4190 year: 2016 end-page: 4203 ident: bib57 article-title: A hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 14 start-page: 3480 year: 2022 ident: bib71 article-title: Cross-comparison of individual tree detection methods using low and high pulse density airborne laser scanning data publication-title: Rem. Sens. – volume: 12 start-page: 425 year: 2007 end-page: 434 ident: bib37 article-title: Detection of individual trees and estimation of tree height using LiDAR data publication-title: J. For. Res. – year: 2021 ident: bib61 article-title: ForestTools: Analyzing Remotely Sensed Forest Data – volume: 11 start-page: 1086 year: 2019 ident: bib2 article-title: A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests publication-title: Rem. Sens. – volume: 42 start-page: 554 year: 2016 end-page: 573 ident: bib69 article-title: Imputation of individual longleaf pine ( publication-title: Can. J. Rem. Sens. – volume: 10 start-page: 694 year: 2019 ident: bib22 article-title: Measuring tree height with remote sensing—a comparison of photogrammetric and LiDAR data with different field measurements publication-title: Forests – volume: 33 start-page: 98 year: 2014 end-page: 108 ident: bib79 article-title: PTrees: a point-based approach to forest tree extraction from lidar data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 163 year: 2019 ident: bib43 article-title: A hybrid method for segmenting individual trees from airborne lidar data publication-title: Comput. Electron. Agric. – volume: 123 year: 2023 ident: bib9 article-title: Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 72 start-page: 357 year: 2006 end-page: 363 ident: bib36 article-title: Detection of individual tree crowns in airborne lidar data publication-title: Photogramm. Eng. Rem. Sens. – volume: 93 start-page: 439 year: 2018 end-page: 456 ident: bib29 article-title: Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems publication-title: Biol. Rev. – volume: 14 start-page: 6950 year: 2022 ident: bib87 article-title: Error analysis of measuring the diameter, tree height, and volume of standing tree using electronic theodolite publication-title: Sustainability – volume: 11 start-page: 223 year: 2020 ident: bib49 article-title: Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in northern Japan publication-title: Forests – volume: 8 start-page: 7 year: 2017 ident: bib68 article-title: Direct measurement of tree height provides different results on the assessment of LiDAR accuracy publication-title: Forests – start-page: 345 year: 2005 end-page: 359 ident: bib25 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation publication-title: Advances in Information Retrieval, Lecture Notes in Computer Science – volume: 9 start-page: 148 year: 2017 ident: bib30 article-title: Adaptive mean shift-based identification of individual trees using airborne LiDAR data publication-title: Rem. Sens. – volume: 54 start-page: 5011 year: 2016 end-page: 5027 ident: bib82 article-title: International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 51 start-page: 1093 year: 2021 end-page: 1105 ident: bib14 article-title: Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds publication-title: Can. J. For. Res. – volume: 39 start-page: 1080 year: 2009 end-page: 1091 ident: bib3 article-title: Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing publication-title: Can. J. For. Res. – volume: 76 start-page: 701 year: 2010 end-page: 712 ident: bib26 article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods publication-title: Photogramm. Eng. Rem. Sens. – volume: 12 start-page: 1078 year: 2020 ident: bib45 article-title: Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features publication-title: Rem. Sens. – volume: 35 start-page: 7199 year: 2014 end-page: 7218 ident: bib91 article-title: Isolating individual trees in a closed coniferous forest using small footprint lidar data publication-title: Int. J. Rem. Sens. – volume: 5 year: 2022 ident: bib40 article-title: The unseen effects of deforestation: biophysical effects on climate publication-title: Front. For. Glob. Change – volume: 94 start-page: 1 year: 2014 end-page: 12 ident: bib44 article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 13 start-page: 1571 year: 2016 end-page: 1585 ident: bib94 article-title: Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries publication-title: Biogeosciences – start-page: 350 year: 2008 end-page: 355 ident: bib53 article-title: Individual tree detection based on densities of high points of high resolution airborne LiDAR publication-title: GEOBIA, 2008 — Pixels, Objects, Intelligence. Presented at the GEOgraphic Object Based Image Analysis for the 21st Century – volume: 66 start-page: 28 year: 2011 end-page: 37 ident: bib88 article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 10 start-page: 694 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib22 article-title: Measuring tree height with remote sensing—a comparison of photogrammetric and LiDAR data with different field measurements publication-title: Forests doi: 10.3390/f10080694 – volume: 64 start-page: 561 year: 2009 ident: 10.1016/j.rsase.2024.101178_bib65 article-title: 3D segmentation of single trees exploiting full waveform LIDAR data publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2009.04.002 – volume: 14 start-page: 3480 year: 2022 ident: 10.1016/j.rsase.2024.101178_bib71 article-title: Cross-comparison of individual tree detection methods using low and high pulse density airborne laser scanning data publication-title: Rem. Sens. doi: 10.3390/rs14143480 – volume: 310 start-page: 994 year: 2013 ident: 10.1016/j.rsase.2024.101178_bib93 article-title: Amazon palm biomass and allometry publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.09.045 – volume: 255 start-page: 2416 year: 2008 ident: 10.1016/j.rsase.2024.101178_bib28 article-title: Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park publication-title: For. Ecol. Manag., Large-Scale Experimentation and Oak Regeneration – volume: 2 year: 2021 ident: 10.1016/j.rsase.2024.101178_bib32 article-title: Improved forest management as a natural climate solution: a review publication-title: Ecol. Solut. Evid. doi: 10.1002/2688-8319.12090 – volume: 13 start-page: 1571 issue: 5 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib94 article-title: Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries publication-title: Biogeosciences doi: 10.5194/bg-13-1571-2016 – volume: 8 start-page: 7 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib68 article-title: Direct measurement of tree height provides different results on the assessment of LiDAR accuracy publication-title: Forests doi: 10.3390/f8010007 – volume: 7 start-page: 6770 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib27 article-title: Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds publication-title: Sci. Rep. doi: 10.1038/s41598-017-07200-0 – volume: 72 start-page: 1287 year: 2006 ident: 10.1016/j.rsase.2024.101178_bib24 article-title: The individual tree crown approach applied to ikonos images of a coniferous plantation area publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.72.11.1287 – volume: 85 start-page: 27 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib78 article-title: Comparative testing of single-tree detection algorithms under different types of forest publication-title: For. Int. J. For. Res. – volume: 4 start-page: 377 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib76 article-title: Tree species detection accuracies using discrete point lidar and airborne waveform lidar publication-title: Rem. Sens. doi: 10.3390/rs4020377 – volume: 41 start-page: 1649 year: 2011 ident: 10.1016/j.rsase.2024.101178_bib77 article-title: Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations publication-title: Can. J. For. Res. doi: 10.1139/x11-083 – volume: 11 start-page: 223 year: 2020 ident: 10.1016/j.rsase.2024.101178_bib49 article-title: Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in northern Japan publication-title: Forests doi: 10.3390/f11020223 – volume: 76 start-page: 701 year: 2010 ident: 10.1016/j.rsase.2024.101178_bib26 article-title: Effects of topographic variability and lidar sampling density on several DEM interpolation methods publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.76.6.701 – volume: 12 start-page: 1078 year: 2020 ident: 10.1016/j.rsase.2024.101178_bib45 article-title: Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features publication-title: Rem. Sens. doi: 10.3390/rs12071078 – volume: 6 start-page: 3899 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib72 article-title: Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds publication-title: Forests doi: 10.3390/f6113899 – start-page: 345 year: 2005 ident: 10.1016/j.rsase.2024.101178_bib25 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation – volume: 42 start-page: 554 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib69 article-title: Imputation of individual longleaf pine (Pinus palustris mill.) tree attributes from field and LiDAR data publication-title: Can. J. Rem. Sens. doi: 10.1080/07038992.2016.1196582 – volume: 13 start-page: 1164 year: 2022 ident: 10.1016/j.rsase.2024.101178_bib70 article-title: Treetop : a Shiny‐based application and R package for extracting forest information from LiDAR data for ecologists and conservationists publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13830 – volume: 70 start-page: 351 year: 2004 ident: 10.1016/j.rsase.2024.101178_bib81 article-title: Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.70.3.351 – volume: 146 start-page: 252 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib13 article-title: Assessing the biomass of shrubs typical of Mediterranean pre-forest communities publication-title: Plant Biosyst. - Int. J. Deal. Asp. Plant Biol. – volume: 8 start-page: 340 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib50 article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest publication-title: Forests doi: 10.3390/f8090340 – volume: 93 start-page: 439 year: 2018 ident: 10.1016/j.rsase.2024.101178_bib29 article-title: Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems publication-title: Biol. Rev. doi: 10.1111/brv.12351 – volume: 7 start-page: 7892 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib89 article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory publication-title: Rem. Sens. doi: 10.3390/rs70607892 – volume: 13 start-page: 322 year: 2021 ident: 10.1016/j.rsase.2024.101178_bib39 article-title: A density-based algorithm for the detection of individual trees from LiDAR data publication-title: Rem. Sens. doi: 10.3390/rs13020322 – volume: 0 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib46 article-title: Forest inventory sensivity to UAS-based image processing algorithms publication-title: Ann. For. Res. doi: 10.15287/afr.2018.1282 – volume: 11 start-page: 64 year: 1998 ident: 10.1016/j.rsase.2024.101178_bib7 article-title: Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis publication-title: Mach. Vis. Appl. doi: 10.1007/s001380050091 – year: 2001 ident: 10.1016/j.rsase.2024.101178_bib42 article-title: Estimation of individual tree heights using LIDAR remote sensing – volume: 23 start-page: 269 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib48 article-title: Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones publication-title: Wetl. Ecol. Manag. doi: 10.1007/s11273-014-9379-x – volume: 24 start-page: 1465 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib17 article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States publication-title: Global Ecol. Biogeogr. doi: 10.1111/geb.12371 – start-page: 1 year: 2009 ident: 10.1016/j.rsase.2024.101178_bib64 article-title: Tree crown delineation from high resolution airborne lidar based on densities of high points – volume: 123 year: 2023 ident: 10.1016/j.rsase.2024.101178_bib9 article-title: Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 5 year: 2022 ident: 10.1016/j.rsase.2024.101178_bib40 article-title: The unseen effects of deforestation: biophysical effects on climate publication-title: Front. For. Glob. Change doi: 10.3389/ffgc.2022.756115 – volume: 7 start-page: 7892 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib90 article-title: Individual tree segmentation from LiDAR point clouds for urban forest inventory publication-title: Rem. Sens. doi: 10.3390/rs70607892 – volume: 37 start-page: 71 year: 2002 ident: 10.1016/j.rsase.2024.101178_bib63 article-title: Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(02)00121-7 – volume: 251 year: 2020 ident: 10.1016/j.rsase.2024.101178_bib66 article-title: lidR: an R package for analysis of Airborne Laser Scanning (ALS) data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112061 – volume: 11 start-page: 1263 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib86 article-title: Mean shift segmentation assessment for individual forest tree delineation from airborne lidar data publication-title: Rem. Sens. doi: 10.3390/rs11111263 – volume: 147 start-page: 132 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib83 article-title: Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – volume: 121 start-page: 210 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib19 article-title: 3-D mapping of a multi-layered Mediterranean forest using ALS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.020 – volume: 14 start-page: 16 year: 2022 ident: 10.1016/j.rsase.2024.101178_bib5 article-title: Methodology of calculating the number of trees based on ALS data for forestry applications for the area of samławki forest district publication-title: Rem. Sens. doi: 10.3390/rs14010016 – volume: 4 start-page: 950 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib34 article-title: An international comparison of individual tree detection and extraction using airborne laser scanning publication-title: Rem. Sens. doi: 10.3390/rs4040950 – volume: 94 start-page: 1 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib44 article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2014.03.014 – volume: 13 start-page: 1028 year: 2021 ident: 10.1016/j.rsase.2024.101178_bib51 article-title: Individual tree detection using UAV-lidar and UAV-SfM data: a tutorial for beginners publication-title: Open Geosci. doi: 10.1515/geo-2020-0290 – volume: 22 start-page: 123 year: 2006 ident: 10.1016/j.rsase.2024.101178_bib6 article-title: Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama publication-title: J. Trop. Ecol. doi: 10.1017/S0266467405003019 – volume: 43 start-page: 1 year: 2009 ident: 10.1016/j.rsase.2024.101178_bib74 article-title: Forest resilience, biodiversity, and climate change publication-title: Secr. Conv. Biol. Divers. Montr. Tech. Ser. No – volume: 6 start-page: 3882 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib54 article-title: Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest publication-title: Forests doi: 10.3390/f6113882 – volume: 40 start-page: 141 year: 2008 ident: 10.1016/j.rsase.2024.101178_bib55 article-title: Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties publication-title: Biotropica doi: 10.1111/j.1744-7429.2007.00353.x – volume: 73 start-page: 103 year: 2000 ident: 10.1016/j.rsase.2024.101178_bib85 article-title: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00101-2 – volume: 71 start-page: 1071 year: 2005 ident: 10.1016/j.rsase.2024.101178_bib58 article-title: Effects of forest environment and survey protocol on GPS accuracy publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.71.9.1071 – volume: 34 start-page: S338 year: 2008 ident: 10.1016/j.rsase.2024.101178_bib18 article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data publication-title: Can. J. Rem. Sens. doi: 10.5589/m08-055 – volume: 10 start-page: 161 year: 2018 ident: 10.1016/j.rsase.2024.101178_bib23 article-title: Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian savannas publication-title: Rem. Sens. doi: 10.3390/rs10020161 – start-page: 178 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib52 article-title: Detecting multi-layered forest stands using high density airborne LiDAR data publication-title: GI_Forum doi: 10.1553/giscience2015s178 – volume: 78 start-page: 75 year: 2012 ident: 10.1016/j.rsase.2024.101178_bib41 article-title: A new method for segmenting individual trees from the lidar point cloud publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.78.1.75 – volume: 12 start-page: 425 year: 2007 ident: 10.1016/j.rsase.2024.101178_bib37 article-title: Detection of individual trees and estimation of tree height using LiDAR data publication-title: J. For. Res. doi: 10.1007/s10310-007-0041-9 – volume: 33 start-page: 98 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib79 article-title: PTrees: a point-based approach to forest tree extraction from lidar data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 148 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib30 article-title: Adaptive mean shift-based identification of individual trees using airborne LiDAR data publication-title: Rem. Sens. doi: 10.3390/rs9020148 – volume: 39 start-page: 1080 year: 2009 ident: 10.1016/j.rsase.2024.101178_bib3 article-title: Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing publication-title: Can. J. For. Res. doi: 10.1139/X09-030 – volume: 32 start-page: 5827 year: 2011 ident: 10.1016/j.rsase.2024.101178_bib38 article-title: Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2010.507790 – volume: 52 start-page: 7619 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib80 article-title: Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2014.2315649 – volume: 80 start-page: 863 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib35 article-title: Generating pit-free canopy height models from airborne lidar publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.80.9.863 – volume: 183 start-page: 318 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib20 article-title: Lidar detection of individual tree size in tropical forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.05.028 – volume: 54 start-page: 5011 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib82 article-title: International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2016.2543225 – year: 2015 ident: 10.1016/j.rsase.2024.101178_bib8 – year: 2001 ident: 10.1016/j.rsase.2024.101178_bib67 – volume: 5 start-page: 86 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib15 article-title: Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species publication-title: Ecosys. Health Sustain. doi: 10.1080/20964129.2019.1591169 – volume: 475 year: 2020 ident: 10.1016/j.rsase.2024.101178_bib21 article-title: Individual tree detection and species classification of Amazonian palms using UAV images and deep learning publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2020.118397 – volume: 72 start-page: 923 year: 2006 ident: 10.1016/j.rsase.2024.101178_bib10 article-title: Isolating individual trees in a savanna woodland using small footprint lidar data publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.72.8.923 – volume: 51 start-page: 1093 year: 2021 ident: 10.1016/j.rsase.2024.101178_bib14 article-title: Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2020-0433 – start-page: 350 year: 2008 ident: 10.1016/j.rsase.2024.101178_bib53 article-title: Individual tree detection based on densities of high points of high resolution airborne LiDAR – volume: 66 start-page: 28 year: 2011 ident: 10.1016/j.rsase.2024.101178_bib88 article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.003 – volume: 14 start-page: 6950 year: 2022 ident: 10.1016/j.rsase.2024.101178_bib87 article-title: Error analysis of measuring the diameter, tree height, and volume of standing tree using electronic theodolite publication-title: Sustainability doi: 10.3390/su14126950 – volume: 35 start-page: 7199 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib91 article-title: Isolating individual trees in a closed coniferous forest using small footprint lidar data publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2014.967886 – volume: 30 start-page: 3843 year: 2009 ident: 10.1016/j.rsase.2024.101178_bib1 article-title: Delineating tree crowns from airborne laser scanning point cloud data using Delaunay triangulation publication-title: Int. J. Rem. Sens. doi: 10.1080/01431160902842318 – volume: 26 start-page: 791 year: 2015 ident: 10.1016/j.rsase.2024.101178_bib73 article-title: Drone remote sensing for forestry research and practices publication-title: J. For. Res. doi: 10.1007/s11676-015-0088-y – volume: 54 start-page: 4190 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib57 article-title: A hierarchical approach to three-dimensional segmentation of LiDAR data at single-tree level in a multilayered forest publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/TGRS.2016.2538203 – volume: 11 start-page: 1086 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib2 article-title: A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests publication-title: Rem. Sens. doi: 10.3390/rs11091086 – volume: 6 start-page: 3475 year: 2014 ident: 10.1016/j.rsase.2024.101178_bib75 article-title: Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries publication-title: Rem. Sens. doi: 10.3390/rs6043475 – volume: 7 start-page: 1236 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib16 article-title: Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12575 – volume: 38 start-page: 2392 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib56 article-title: Determining tree height and crown diameter from high-resolution UAV imagery publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2016.1264028 – volume: 163 year: 2019 ident: 10.1016/j.rsase.2024.101178_bib43 article-title: A hybrid method for segmenting individual trees from airborne lidar data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104871 – volume: 23 start-page: 177 year: 2017 ident: 10.1016/j.rsase.2024.101178_bib31 article-title: Allometric equations for integrating remote sensing imagery into forest monitoring programmes publication-title: Global Change Biol. doi: 10.1111/gcb.13388 – year: 2021 ident: 10.1016/j.rsase.2024.101178_bib61 – year: 2008 ident: 10.1016/j.rsase.2024.101178_bib33 – volume: 70 start-page: 589 year: 2004 ident: 10.1016/j.rsase.2024.101178_bib62 article-title: Seeing the trees in the forest publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.70.5.589 – volume: 31 start-page: 832 year: 2001 ident: 10.1016/j.rsase.2024.101178_bib60 article-title: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods publication-title: Can. J. For. Res. doi: 10.1139/x01-013 – volume: 8 start-page: 333 year: 2016 ident: 10.1016/j.rsase.2024.101178_bib92 article-title: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data publication-title: Rem. Sens. doi: 10.3390/rs8040333 – start-page: 1055 year: 2020 ident: 10.1016/j.rsase.2024.101178_bib59 article-title: Application of tree detection methods over lidar data for forest volume estimation publication-title: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. – year: 2014 ident: 10.1016/j.rsase.2024.101178_bib4 article-title: Individual tree delineation in deciduous forest areas with LiDAR point clouds publication-title: Can. J. Rem. Sens. doi: 10.1080/07038992.2014.943700 – volume: 17 start-page: 790 year: 1995 ident: 10.1016/j.rsase.2024.101178_bib11 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.400568 – volume: 72 start-page: 357 year: 2006 ident: 10.1016/j.rsase.2024.101178_bib36 article-title: Detection of individual tree crowns in airborne lidar data publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.72.4.357 |
| SSID | ssj0001651119 |
| Score | 2.2928607 |
| Snippet | The application of individual tree detection algorithms for assessing forest inventories and aiding decision-making in forestry has been a subject of research... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 101178 |
| SubjectTerms | Airborne laser scanner (ALS) algorithms canopy height Chir pine forests data collection decision making environment forest management Forest structure forests Individual tree detection ITD algorithms LiDAR Local maxima Pinus roxburghii species tree crown trees |
| Title | Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest |
| URI | https://dx.doi.org/10.1016/j.rsase.2024.101178 https://www.proquest.com/docview/3153598869 |
| Volume | 34 |
| WOSCitedRecordID | wos001218798300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-9385 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651119 issn: 2352-9385 databaseCode: AIEXJ dateStart: 20150701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEICtssuBC1oeK5aXjIQQqKTKO_GxoK4AVaUSrdSb5cTONtU27SZptdo7P4H_yzh2HlCBlgOXJJq2TtT55IxnPDMIvSbchaWxFxvCDbnhctszwMogBo85M_0oSjhRzSaCySRcLMi01_tR58LsL4MsC6-vyfa_qhpkoGyZOvsP6m4GBQFcg9LhCGqH460UP-2kArS1vFVpiCb5Ssai-1yUQncKl95zcbHWiUgguLzY5Gm5XBf9XeVNGI6_9eVu0ipLcJnm_ak2T-G8K_q5jtekqXQzwP3rqFVd-1sAEgLukVWjdcPmjY-HCeV4nTEYv8WtKJiqczBasZtaPAd6l8qjvU4bvK-0bazc2up6L0_DD7zr3rC7u2KqWdAGC9EgjurrMxCHsoN3gHJHrAZ5AXbAQI4pZZbqFPRrxe3JV3o-H4_pbLSYvdleGbIZmQza684sd9CxHXgEJsvj4efR4kvrvPPBTq2axjSPUle0qvYOHtz6T1bPb-__yqiZnaD7ejWCh4qiB6gnsofodNQmP8KHevYvHqHvHbRwixbeJLhFC0u0cIMWBrRwFy3cooUrtDCghSVaMAiWaGGJFn5bgYVbsN5hhdVjND8fzT5-MnQbDyO2Q780HAJrAuFGls9g_St4whPTiv1A-FbssMSWsWFYl9ih8KPYJKbrJIEt6zxGJje5Zzqn6CjbZOIJwtwJIitiIRMRcU3bJ5yFFos58QInEHZ8ht7XfzPdqmottN7GuKKVVqjUClVaOUN-rQqqDU5lSFJg6e8_fFUrjsJ0LGNsLBObXUEdsCA8EoY-eXqL7zxD91rmn6OjMt-JF-huvC_TIn-pqfsJ0aGvbQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+individual+tree+detection+and+segmentation+algorithms+using+ALS+data+in+Chir+Pine+%28Pinus+roxburghii%29+forest&rft.jtitle=Remote+sensing+applications&rft.au=Saeed%2C+Tahir&rft.au=Hussain%2C+Ejaz&rft.au=Ullah%2C+Sami&rft.au=Iqb%C4%81l%2C+J%C4%81v%C4%ABd&rft.date=2024-04-01&rft.issn=2352-9385&rft.eissn=2352-9385&rft_id=info:doi/10.1016%2Fj.rsase.2024.101178&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9385&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9385&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9385&client=summon |