On the Windowed Fourier Transform and Wavelet Transform of Almost Periodic Functions
We present the windowed Fourier transform and wavelet transform as tools for analyzing persistent signals, such as bounded power signals and almost periodic functions. We establish the analogous Parseval-type identities. We consider discretized versions of these transforms and construct generalized...
Uloženo v:
| Vydáno v: | Applied and computational harmonic analysis Ročník 10; číslo 1; s. 45 - 60 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
2001
|
| Témata: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present the windowed Fourier transform and wavelet transform as tools for analyzing persistent signals, such as bounded power signals and almost periodic functions. We establish the analogous Parseval-type identities. We consider discretized versions of these transforms and construct generalized frame decompositions. Finally, we bring out some relations with shift-invariant operators and linear systems. |
|---|---|
| ISSN: | 1063-5203 1096-603X |
| DOI: | 10.1006/acha.2000.0326 |