The Impact of Feature Selection on Epilepsy Diagnosis from EEG Signals: A Comparison of Dynamic Time Warping and Itakura-Saito Distance
Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play an important role in reducing the time, effort, and subjectivity involved in manual analysis performed by neurologists. However, many previo...
Gespeichert in:
| Veröffentlicht in: | Advances in Electrical and Computer Engineering Jg. 25; H. 3; S. 45 - 58 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Stefan cel Mare University of Suceava
01.08.2025
|
| Schlagworte: | |
| ISSN: | 1582-7445, 1844-7600 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play an important role in reducing the time, effort, and subjectivity involved in manual analysis performed by neurologists. However, many previous studies mainly focused on timedomain similarity measures, fuzzy logic models, or neural network-based classifiers and did not fully explore the potential of spectral similarity features for seizure detection. This study introduces a new approach by applying the Dynamic Time Warping method directly to power spectral density data obtained using the Welch method. This enables a spectral similarity analysis that is independent of time shifts and better reflects the non-stationary nature of brain signals. In addition, the Itakura-Saito distance is investigated for the first time for epileptic seizure detection and compared with the Dynamic Time Warping method. A twelve-feature vector was created using reference-based similarity measurements combined with energy and spectral features, and multiple classification methods were evaluated. Experimental results on the Bonn electroencephalogram dataset demonstrate that Dynamic Time Warping achieved the highest classification performance, with the Random Forest algorithm reaching 100% accuracy in binary tasks. These findings highlight the importance of spectral similarity features in improving automatic seizure detection systems and demonstrate the clinical value of the proposed approach. Index Terms--biomedical signal processing, decision support systems, epilepsy, feature extraction, machine learning. |
|---|---|
| AbstractList | Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play an important role in reducing the time, effort, and subjectivity involved in manual analysis performed by neurologists. However, many previous studies mainly focused on timedomain similarity measures, fuzzy logic models, or neural network-based classifiers and did not fully explore the potential of spectral similarity features for seizure detection. This study introduces a new approach by applying the Dynamic Time Warping method directly to power spectral density data obtained using the Welch method. This enables a spectral similarity analysis that is independent of time shifts and better reflects the non-stationary nature of brain signals. In addition, the Itakura-Saito distance is investigated for the first time for epileptic seizure detection and compared with the Dynamic Time Warping method. A twelve-feature vector was created using reference-based similarity measurements combined with energy and spectral features, and multiple classification methods were evaluated. Experimental results on the Bonn electroencephalogram dataset demonstrate that Dynamic Time Warping achieved the highest classification performance, with the Random Forest algorithm reaching 100% accuracy in binary tasks. These findings highlight the importance of spectral similarity features in improving automatic seizure detection systems and demonstrate the clinical value of the proposed approach. Index Terms--biomedical signal processing, decision support systems, epilepsy, feature extraction, machine learning. Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play an important role in reducing the time, effort, and subjectivity involved in manual analysis performed by neurologists. However, many previous studies mainly focused on timedomain similarity measures, fuzzy logic models, or neural network-based classifiers and did not fully explore the potential of spectral similarity features for seizure detection. This study introduces a new approach by applying the Dynamic Time Warping method directly to power spectral density data obtained using the Welch method. This enables a spectral similarity analysis that is independent of time shifts and better reflects the non-stationary nature of brain signals. In addition, the Itakura-Saito distance is investigated for the first time for epileptic seizure detection and compared with the Dynamic Time Warping method. A twelve-feature vector was created using reference-based similarity measurements combined with energy and spectral features, and multiple classification methods were evaluated. Experimental results on the Bonn electroencephalogram dataset demonstrate that Dynamic Time Warping achieved the highest classification performance, with the Random Forest algorithm reaching 100% accuracy in binary tasks. These findings highlight the importance of spectral similarity features in improving automatic seizure detection systems and demonstrate the clinical value of the proposed approach. Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play an important role in reducing the time, effort, and subjectivity involved in manual analysis performed by neurologists. However, many previous studies mainly focused on time-domain similarity measures, fuzzy logic models, or neural network-based classifiers and did not fully explore the potential of spectral similarity features for seizure detection. This study introduces a new approach by applying the Dynamic Time Warping method directly to power spectral density data obtained using the Welch method. This enables a spectral similarity analysis that is independent of time shifts and better reflects the non-stationary nature of brain signals. In addition, the Itakura-Saito distance is investigated for the first time for epileptic seizure detection and compared with the Dynamic Time Warping method. A twelve-feature vector was created using reference-based similarity measurements combined with energy and spectral features, and multiple classification methods were evaluated. Experimental results on the Bonn electroencephalogram dataset demonstrate that Dynamic Time Warping achieved the highest classification performance, with the Random Forest algorithm reaching 100% accuracy in binary tasks. These findings highlight the importance of spectral similarity features in improving automatic seizure detection systems and demonstrate the clinical value of the proposed approach. |
| Audience | Academic |
| Author | EKIM, G. IKIZLER, N. |
| Author_xml | – sequence: 1 givenname: G. surname: EKIM fullname: EKIM, G. – sequence: 2 givenname: N. surname: IKIZLER fullname: IKIZLER, N. |
| BookMark | eNptkUFr3DAQhU1IIWmac66Cnr2RJVm2e1s2TroQ6GG39ChG8shRu5aM5Bz2F-RvV5sthUKZgRHivY9h3sfi0gePRXFX0ZXglbxf95t-xSirV5RTKi-K66oVomwkpZf5XbesbISor4rblJymQjSsZVxeF2_7FyTbaQazkGDJI8LyGpHs8IBmccGT3P3sDjinI3lwMPqQXCI2hon0_RPZudHDIX0ha7IJGRNdOpkseTh6mJwhezch-QFxdn4k4AeyXeDXa4RyB24JGZkW8AY_FR9s5uDtn3lTfH_s95uv5fO3p-1m_Vwa1kpZQteKVugK9TCYuhWGGTDWiIpqUWvDEJpOYi0HybqGW9kabXWHUGteNcCB3xTbM3cI8FPN0U0QjyqAU-8fIY4K4uLMAZXNeEBqKOu4YLbpdA3Ydah5LgM6sz6fWSNkufM2LBHM5JJR61aKqmKyEVm1-o8q14D5PjlGm6_7r-H-bDAxpBTR_l2zouqUtjqlrU5pq_e0-W-HlZ6Y |
| Cites_doi | 10.1007/s10470-021-01805-2 10.1109/JSEN.2020.3026032 10.1016/j.jksuci.2018.04.014 10.1016/j.bspc.2021.103031 10.59277/ROMJIST.2024.1.08 10.1016/j.bspc.2019.101707 10.1016/j.eswa.2021.115175 10.20895/infotel.v15i1.874 10.1080/03091902.2017.1394388 10.4316/AECE.2017.04001 10.1002/ima.22565 10.1016/j.amjmed.2021.01.038 10.59277/ROMJIST.2023.3-4.10 10.1007/s00170-023-11280-w 10.2339/politeknik.672077 10.2339/politeknik.1605362 10.1016/j.eswa.2016.09.037 10.1016/j.jocs.2023.101943 10.1016/j.procs.2019.05.007 10.52876/jcs.1226579 10.1038/s41598-021-83337-3 10.1103/PhysRevE.64.061907 10.1016/j.compbiomed.2017.01.017 10.1007/s11045-018-0628-7 10.1080/01616412.2018.1508544 10.1016/j.engappai.2020.103975 10.1007/s11062-012-9268-y 10.1016/j.neuroimage.2009.06.057 10.1093/brain/awae385 10.1016/j.neurol.2023.12.005 10.1016/j.jestch.2025.102005 10.2339/politeknik.1055549 10.1186/s40708-018-0084-z 10.3233/THC-171343 10.1080/03772063.2021.1913074 10.1109/TITB.2009.2017939 10.1016/j.artmed.2017.12.004 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Stefan cel Mare University of Suceava |
| Copyright_xml | – notice: COPYRIGHT 2025 Stefan cel Mare University of Suceava |
| DBID | AAYXX CITATION DOA |
| DOI | 10.4316/AECE.2025.03006 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1844-7600 |
| EndPage | 58 |
| ExternalDocumentID | oai_doaj_org_article_f84cae0c029342f79b5ae99eb3b3bcab A864112674 10_4316_AECE_2025_03006 |
| GeographicLocations | Turkey |
| GeographicLocations_xml | – name: Turkey |
| GroupedDBID | 23M 5GY 5VS AAKPC AAYXX ABJCF ADBBV AENEX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BAIFH BBTPI BCNDV BENPR BGLVJ C1A CCPQU CITATION E3Z GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC KQ8 M7S OK1 PHGZM PHGZT PQGLB PTHSS PV9 RIG RZL TR2 ADMLS |
| ID | FETCH-LOGICAL-c2866-a98484b1ebddc584c2cacfc410b45bc2ea796e56d62973f68cbfb9ea5b317a3a3 |
| IEDL.DBID | DOA |
| ISSN | 1582-7445 |
| IngestDate | Mon Nov 03 22:01:33 EST 2025 Wed Dec 10 10:35:35 EST 2025 Tue Dec 02 03:52:10 EST 2025 Wed Nov 05 20:55:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2866-a98484b1ebddc584c2cacfc410b45bc2ea796e56d62973f68cbfb9ea5b317a3a3 |
| OpenAccessLink | https://doaj.org/article/f84cae0c029342f79b5ae99eb3b3bcab |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f84cae0c029342f79b5ae99eb3b3bcab gale_infotracmisc_A864112674 gale_infotracacademiconefile_A864112674 crossref_primary_10_4316_AECE_2025_03006 |
| PublicationCentury | 2000 |
| PublicationDate | 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 20250801 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in Electrical and Computer Engineering |
| PublicationYear | 2025 |
| Publisher | Stefan cel Mare University of Suceava |
| Publisher_xml | – name: Stefan cel Mare University of Suceava |
| References | Tzallas (10.1109/TITB.2009.2017939) 2009; 13 Sharmila (10.1080/03091902.2017.1394388) 2017; 41 Radman (10.1109/JSEN.2020.3026032) 2021; 21 Sulaiman (10.1109/UKSIM.2011.23) 2011 Ahmed (10.1016/j.compbiomed.2017.01.017) 2017; 82 Choubey (10.1007/s11045-018-0628-7) 2019; 30 Ikizler (10.1016/j.jestch.2025.102005) 2025; 64 Amin (10.1016/j.bspc.2019.101707) 2020; 56 TUNCER (10.2339/politeknik.672077) 2022; 25 Jana (10.1080/03772063.2021.1913074) 2023; 69 Harpale (10.1016/j.jksuci.2018.04.014) 2021; 33 Liu (10.3233/THC-171343) 2017; 25 Mandhouj (10.1007/s10470-021-01805-2) 2021; 108 Varli (10.1016/j.jocs.2023.101943) 2023; 67 CANYURT (10.52876/jcs.1226579) 2023; 8 Zhang (10.1016/j.engappai.2020.103975) 2020; 96 Tuncer (10.1016/j.eswa.2021.115175) 2021; 182 Andrzejak (10.1103/PhysRevE.64.061907) 2001; 64 Ashokkumar (10.1002/ima.22565) 2021; 31 NING (10.59277/ROMJIST.2024.1.08) 2024; 2024 Thomas (10.1109/ICASSP.2016.7471775) 2016 de Toffol (10.1016/j.neurol.2023.12.005) 2024; 180 Ahmad (10.1109/ICPR.2014.583) 2014 BORLEA (10.4316/AECE.2017.04001) 2017; 17 Paul (10.1186/s40708-018-0084-z) 2018; 5 Ikizler (10.2339/politeknik.1605362) 2025; 28 Kinaci (10.2339/politeknik.1055549) 2024; 27 Vysata (10.1007/s11062-012-9268-y) 2012; 44 Pyrzowski (10.1038/s41598-021-83337-3) 2021; 11 MIHALACHE (10.59277/ROMJIST.2023.3-4.10) 2023; 2023 Hosseini (10.1016/j.artmed.2017.12.004) 2018; 84 Ahuja (10.1016/j.procs.2019.05.007) 2019; 152 Aarabi (10.1016/j.neuroimage.2009.06.057) 2009; 48 Tchane Djogdom (10.1007/s00170-023-11280-w) 2023; 126 Zhang (10.1109/BMEI.2008.254) 2008 Trevelyan (10.1093/brain/awae385) 2025; 148 Milligan (10.1016/j.amjmed.2021.01.038) 2021; 134 Saini (10.1080/01616412.2018.1508544) 2018; 40 Eltrass (10.1016/j.bspc.2021.103031) 2021; 70 Melinda (10.20895/infotel.v15i1.874) 2023; 15 Alotaiby (10.1109/ICEDSA.2016.7818505) 2016 Amorim (10.1016/j.eswa.2016.09.037) 2017; 67 |
| References_xml | – volume: 108 start-page: 101 year: 2021 ident: 10.1007/s10470-021-01805-2 publication-title: Analog Integrated Circuits and Signal Processing doi: 10.1007/s10470-021-01805-2 – volume: 21 start-page: 3533 year: 2021 ident: 10.1109/JSEN.2020.3026032 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.3026032 – volume: 33 start-page: 668 year: 2021 ident: 10.1016/j.jksuci.2018.04.014 publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2018.04.014 – volume: 70 start-page: 103031 year: 2021 ident: 10.1016/j.bspc.2021.103031 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103031 – start-page: 69 year: 2011 ident: 10.1109/UKSIM.2011.23 – volume: 2024 start-page: 106 year: 2024 ident: 10.59277/ROMJIST.2024.1.08 publication-title: Romanian Journal of Information Science and Technology doi: 10.59277/ROMJIST.2024.1.08 – volume: 56 start-page: 101707 year: 2020 ident: 10.1016/j.bspc.2019.101707 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.101707 – volume: 182 start-page: 115175 year: 2021 ident: 10.1016/j.eswa.2021.115175 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115175 – volume: 15 start-page: 111 year: 2023 ident: 10.20895/infotel.v15i1.874 publication-title: JURNAL INFOTEL doi: 10.20895/infotel.v15i1.874 – volume: 41 start-page: 670 year: 2017 ident: 10.1080/03091902.2017.1394388 publication-title: Journal of Medical Engineering & Technology doi: 10.1080/03091902.2017.1394388 – volume: 17 start-page: 3 year: 2017 ident: 10.4316/AECE.2017.04001 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2017.04001 – volume: 31 start-page: 895 year: 2021 ident: 10.1002/ima.22565 publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22565 – volume: 134 start-page: 840 year: 2021 ident: 10.1016/j.amjmed.2021.01.038 publication-title: The American Journal of Medicine doi: 10.1016/j.amjmed.2021.01.038 – start-page: 1 year: 2016 ident: 10.1109/ICEDSA.2016.7818505 – volume: 2023 start-page: 375 year: 2023 ident: 10.59277/ROMJIST.2023.3-4.10 publication-title: Romanian Journal of Information Science and Technology doi: 10.59277/ROMJIST.2023.3-4.10 – volume: 126 start-page: 4521 year: 2023 ident: 10.1007/s00170-023-11280-w publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-023-11280-w – volume: 25 start-page: 239 year: 2022 ident: 10.2339/politeknik.672077 publication-title: Politeknik Dergisi doi: 10.2339/politeknik.672077 – start-page: 749 year: 2016 ident: 10.1109/ICASSP.2016.7471775 – volume: 28 start-page: 1255 year: 2025 ident: 10.2339/politeknik.1605362 publication-title: Politeknik Dergisi doi: 10.2339/politeknik.1605362 – volume: 67 start-page: 140 year: 2017 ident: 10.1016/j.eswa.2016.09.037 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.09.037 – volume: 67 start-page: 101943 year: 2023 ident: 10.1016/j.jocs.2023.101943 publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2023.101943 – volume: 152 start-page: 349 year: 2019 ident: 10.1016/j.procs.2019.05.007 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.05.007 – volume: 8 start-page: 16 year: 2023 ident: 10.52876/jcs.1226579 publication-title: The Journal of Cognitive Systems doi: 10.52876/jcs.1226579 – volume: 11 start-page: 2 year: 2021 ident: 10.1038/s41598-021-83337-3 publication-title: Scientific Reports doi: 10.1038/s41598-021-83337-3 – volume: 64 start-page: 352 year: 2001 ident: 10.1103/PhysRevE.64.061907 publication-title: Physical Review E doi: 10.1103/PhysRevE.64.061907 – volume: 82 start-page: 100 year: 2017 ident: 10.1016/j.compbiomed.2017.01.017 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2017.01.017 – volume: 30 start-page: 1793 year: 2019 ident: 10.1007/s11045-018-0628-7 publication-title: Multidimensional Systems and Signal Processing doi: 10.1007/s11045-018-0628-7 – start-page: 435 year: 2008 ident: 10.1109/BMEI.2008.254 – volume: 40 start-page: 982 year: 2018 ident: 10.1080/01616412.2018.1508544 publication-title: Neurological Research doi: 10.1080/01616412.2018.1508544 – volume: 96 start-page: 103975 year: 2020 ident: 10.1016/j.engappai.2020.103975 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103975 – volume: 44 start-page: 63 year: 2012 ident: 10.1007/s11062-012-9268-y publication-title: Neurophysiology doi: 10.1007/s11062-012-9268-y – volume: 48 start-page: 50 year: 2009 ident: 10.1016/j.neuroimage.2009.06.057 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.057 – volume: 148 start-page: 746 year: 2025 ident: 10.1093/brain/awae385 publication-title: Brain doi: 10.1093/brain/awae385 – start-page: 3386 year: 2014 ident: 10.1109/ICPR.2014.583 – volume: 180 start-page: 298 year: 2024 ident: 10.1016/j.neurol.2023.12.005 publication-title: Revue Neurologique doi: 10.1016/j.neurol.2023.12.005 – volume: 64 start-page: 102005 year: 2025 ident: 10.1016/j.jestch.2025.102005 publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2025.102005 – volume: 27 start-page: 587 year: 2024 ident: 10.2339/politeknik.1055549 publication-title: Politeknik Dergisi doi: 10.2339/politeknik.1055549 – volume: 5 start-page: 147 year: 2018 ident: 10.1186/s40708-018-0084-z publication-title: Brain Informatics doi: 10.1186/s40708-018-0084-z – volume: 25 start-page: 399 year: 2017 ident: 10.3233/THC-171343 publication-title: Technology and Health Care doi: 10.3233/THC-171343 – volume: 69 start-page: 3120 year: 2023 ident: 10.1080/03772063.2021.1913074 publication-title: IETE Journal of Research doi: 10.1080/03772063.2021.1913074 – volume: 13 start-page: 703 year: 2009 ident: 10.1109/TITB.2009.2017939 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2017939 – volume: 84 start-page: 146 year: 2018 ident: 10.1016/j.artmed.2017.12.004 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2017.12.004 |
| SSID | ssib044728236 ssib057620034 ssj0000395691 |
| Score | 2.3371835 |
| Snippet | Epileptic seizure detection is crucial for accurate diagnosis and effective treatment of epilepsy. Automated systems based on electroencephalogram signals play... |
| SourceID | doaj gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 45 |
| SubjectTerms | Algorithms Analysis biomedical signal processing Care and treatment Comparative analysis decision support systems Diagnosis Electroencephalography Epilepsy feature extraction machine learning Methods Physiological aspects Signal processing |
| Title | The Impact of Feature Selection on Epilepsy Diagnosis from EEG Signals: A Comparison of Dynamic Time Warping and Itakura-Saito Distance |
| URI | https://doaj.org/article/f84cae0c029342f79b5ae99eb3b3bcab |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044728236 issn: 1582-7445 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: M7S dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1844-7600 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395691 issn: 1582-7445 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiKdYKMgHJLiEuo7j2NyWbQo9UCEtiN6s8cRBq0rbVXYXqZde-dvMxNtVOHFBiSLlIcv2zNgz0cz3CfGGC3lM0liUnUuF8egLV7Zl0enSpmjQHEMmm6jPz93Fhf86ovrinLAMD5wn7qhzBiEpVLQvGd3VPlaQvKcYkA6EyKuvqv0omCJNMqbWt0zefE9ONSdhmf3fF1VSXOAzmCq7mMZUGfeHK8OPps2sodBRV-_JBJgLabRlDcj-u_V7tBOdPhQPdi6knOauPxJ30vKxuD8CFnwifpP05dlQACmvOsl-3rZPcj6Q3pAkJJ3NihaE1fpanuRsu8Vacq2JbJpPcr74ybjKH-RUzvZEhdzSSSawl1w5In9Az9VWEpatPNvA5baHYg60RFCT7HRieiq-nzbfZp-LHeVCgdpZW4B3xpl4nGLbIvkmqBGwI4mpaKqIOkHtbapsa5nzqrMOYxd9giqSHwIllM_EwfJqmZ4L2SJo1UbrSgXGoYrKY4U-kcfWkt3riXh3O6thlZE1AkUkLIDAAggsgDAIYCI-8qzvP2NI7OEBKUrYKUr4l6JMxFuWWWDD3fRA48r1B9RbhsAKU2cN11PVZiIO__qSDA5Hr1_8j968FPd4fDmV8FAcbPpteiXu4q_NYt2_HpSZrl9umj-qjfXz |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Feature+Selection+on+Epilepsy+Diagnosis+from+EEG+Signals%3A+A+Comparison+of+Dynamic+Time+Warping+and+Itakura-Saito+Distance&rft.jtitle=Advances+in+electrical+and+computer+engineering&rft.au=EKIM%2C+G.&rft.au=IKIZLER%2C+N.&rft.date=2025-08-01&rft.issn=1582-7445&rft.eissn=1844-7600&rft.volume=25&rft.issue=3&rft.spage=45&rft.epage=58&rft_id=info:doi/10.4316%2FAECE.2025.03006&rft.externalDBID=n%2Fa&rft.externalDocID=10_4316_AECE_2025_03006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon |