Template-based modeling and free modeling by I-TASSER in CASP7
Gespeichert in:
| Veröffentlicht in: | Proteins, structure, function, and bioinformatics Jg. 69; H. S8; S. 108 - 117 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
2007
|
| Schlagworte: | |
| ISSN: | 0887-3585, 1097-0134 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Author | Zhang, Yang |
|---|---|
| Author_xml | – sequence: 1 givenname: Yang surname: Zhang fullname: Zhang, Yang email: yzhang@ku.edu organization: Center for Bioinformatics, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047 |
| BookMark | eNptj8FKAzEURYNUsK1u_IJZC6lJXpPMbIRSai0WFVupu_AyeZXR6UzJzML-vdaKgri6cLnnwumxTlVXxNi5FAMphLrcxrodKGmFOmJdKTLLhYRhh3VFmloOOtUnrNc0r0IIk4HpsqslbbYltsQ9NhSSTR2oLKqXBKuQrCPRb-N3yYwvR4vF5DEpqmQ8WjzYU3a8xrKhs-_ss6fryXJ8w-f309l4NOe5So3ieQoGUFoVMAcwQ48eswDGaxuCDISSdOaVImGBSHvyKidPmZEaDYKCPrs4_OaxbppIa7eNxQbjzknh9uZub-6-zD_H4s84L1psi7pqIxbl_wg_IEXT0vvPOcY3ZyxY7VZ3U7e6neol6GcH8AGP_GyJ |
| CitedBy_id | crossref_primary_10_1002_prot_22533 crossref_primary_10_1016_j_jpdc_2011_10_005 crossref_primary_10_1093_hmg_ddp551 crossref_primary_10_1371_journal_pone_0096276 crossref_primary_10_1016_j_asoc_2013_10_029 crossref_primary_10_1074_jbc_M112_442053 crossref_primary_10_1016_j_jmb_2007_12_022 crossref_primary_10_1002_anie_201203603 crossref_primary_10_1016_j_bbabio_2011_10_005 crossref_primary_10_1007_s00705_011_0928_9 crossref_primary_10_1155_2021_9940010 crossref_primary_10_1074_jbc_M114_627356 crossref_primary_10_1002_jcc_21001 crossref_primary_10_1111_are_12818 crossref_primary_10_1002_prot_24167 crossref_primary_10_1016_j_sbi_2008_02_004 crossref_primary_10_1002_prot_22781 crossref_primary_10_1002_prot_26585 crossref_primary_10_1016_j_compbiolchem_2014_10_001 crossref_primary_10_1016_j_bbamem_2011_01_003 crossref_primary_10_1016_j_bbapap_2011_05_009 crossref_primary_10_1186_1471_2164_10_445 crossref_primary_10_1016_j_micpath_2017_08_046 crossref_primary_10_12688_f1000research_2_211_v1 crossref_primary_10_1074_jbc_M109_072108 crossref_primary_10_3390_molecules25112467 crossref_primary_10_1038_s41596_022_00728_0 crossref_primary_10_1016_j_sbi_2009_04_009 crossref_primary_10_1186_s12859_017_1755_0 crossref_primary_10_1155_2013_543028 crossref_primary_10_1111_j_1365_2958_2010_07196_x crossref_primary_10_1016_j_matbio_2014_06_005 crossref_primary_10_1186_1756_3305_6_150 crossref_primary_10_1371_journal_pone_0018414 crossref_primary_10_1016_j_bbamcr_2010_03_005 crossref_primary_10_1002_prot_24733 crossref_primary_10_1007_s11033_012_2145_3 crossref_primary_10_1016_j_str_2011_04_005 crossref_primary_10_1002_pro_2050 crossref_primary_10_1016_j_str_2011_09_022 crossref_primary_10_1002_ange_201204109 crossref_primary_10_5812_hepatmon_6184 crossref_primary_10_1002_prot_22438 crossref_primary_10_1091_mbc_e10_06_0551 crossref_primary_10_4103_tjo_tjo_16_19 crossref_primary_10_1016_j_fob_2013_09_006 crossref_primary_10_1007_s10570_013_9933_3 crossref_primary_10_1093_molbev_msp088 crossref_primary_10_1002_prot_24065 crossref_primary_10_1016_j_str_2012_03_009 crossref_primary_10_1016_j_ijbiomac_2012_10_032 crossref_primary_10_1371_journal_pone_0074132 crossref_primary_10_1016_j_ygeno_2012_06_012 crossref_primary_10_1038_s41598_018_33215_2 crossref_primary_10_1227_NEU_0000000000000589 crossref_primary_10_1002_prot_22320 crossref_primary_10_3109_1354750X_2012_699556 crossref_primary_10_1002_mef2_96 crossref_primary_10_1016_j_exger_2014_05_007 crossref_primary_10_1111_j_1365_2958_2009_06746_x crossref_primary_10_1371_journal_pone_0069464 crossref_primary_10_1016_j_jsb_2012_04_015 crossref_primary_10_1002_anie_201204109 crossref_primary_10_1186_1756_3305_5_224 crossref_primary_10_1007_s10534_014_9785_9 crossref_primary_10_3389_fendo_2015_00140 crossref_primary_10_1093_nar_gkv885 crossref_primary_10_1186_2193_1801_2_17 crossref_primary_10_1074_jbc_M800036200 crossref_primary_10_1016_j_dnarep_2009_09_010 crossref_primary_10_1111_omi_12414 crossref_primary_10_1002_bies_202400155 crossref_primary_10_1186_1477_7827_11_25 crossref_primary_10_1007_s00894_011_1320_0 crossref_primary_10_1109_MCI_2012_2215134 crossref_primary_10_1002_jcc_23315 crossref_primary_10_1016_j_febslet_2008_02_019 crossref_primary_10_1016_j_enzmictec_2009_05_010 crossref_primary_10_1007_s00894_010_0693_9 crossref_primary_10_1016_j_ygcen_2014_05_028 crossref_primary_10_1038_srep25406 crossref_primary_10_3390_pharmaceutics15010083 crossref_primary_10_1002_prot_22738 crossref_primary_10_1016_j_bmcl_2016_01_045 crossref_primary_10_1002_adbi_202300122 crossref_primary_10_1016_j_jmb_2009_07_049 crossref_primary_10_1529_biophysj_107_124016 crossref_primary_10_1016_j_jbiotec_2014_01_037 crossref_primary_10_1016_j_compbiolchem_2017_03_007 crossref_primary_10_1007_s12539_015_0268_7 crossref_primary_10_1080_10826068_2015_1015564 crossref_primary_10_1111_1574_6941_12153 crossref_primary_10_1371_journal_pone_0033863 crossref_primary_10_1371_journal_pone_0048689 crossref_primary_10_1002_prot_22508 crossref_primary_10_1017_S0967199418000102 crossref_primary_10_1002_ange_201203603 crossref_primary_10_1128_JVI_00888_13 crossref_primary_10_1186_1475_2875_10_318 crossref_primary_10_1016_j_ajhg_2010_06_004 crossref_primary_10_1016_j_pep_2017_03_011 crossref_primary_10_1016_j_ymeth_2014_08_017 crossref_primary_10_3390_biom11121788 crossref_primary_10_1016_j_virol_2012_05_011 crossref_primary_10_1186_1472_6807_9_28 crossref_primary_10_1016_j_procbio_2013_07_009 crossref_primary_10_1128_mSystems_00232_20 crossref_primary_10_1093_nar_gkv342 crossref_primary_10_1002_prot_23163 crossref_primary_10_1002_prot_23165 crossref_primary_10_1002_prot_23160 crossref_primary_10_3390_pathogens10091082 crossref_primary_10_1016_j_gene_2021_145554 crossref_primary_10_1007_s00709_012_0463_x crossref_primary_10_7717_peerj_3139 crossref_primary_10_1016_j_dci_2012_09_002 crossref_primary_10_1074_jbc_M110_106476 crossref_primary_10_1128_JB_00093_12 crossref_primary_10_3389_feart_2023_1253495 crossref_primary_10_3892_ijmm_2012_1051 crossref_primary_10_1128_JVI_02156_09 crossref_primary_10_1016_j_jmgm_2017_09_019 crossref_primary_10_1016_j_bjp_2017_07_006 crossref_primary_10_1002_dvdy_21873 crossref_primary_10_1016_j_bbagen_2011_09_014 crossref_primary_10_1161_CIRCGENETICS_111_961854 crossref_primary_10_1186_1471_2105_9_40 crossref_primary_10_1074_jbc_M110_133140 crossref_primary_10_1016_j_virol_2011_07_012 crossref_primary_10_1002_prot_24944 crossref_primary_10_1016_j_coviro_2015_03_013 crossref_primary_10_1007_s00253_013_5047_y crossref_primary_10_1016_j_bpj_2011_10_046 crossref_primary_10_1140_epjd_e2008_00086_2 crossref_primary_10_1007_s00412_011_0355_4 crossref_primary_10_1016_j_gene_2012_09_086 crossref_primary_10_5012_bkcs_2012_33_5_1597 crossref_primary_10_1007_s12033_013_9677_1 crossref_primary_10_1093_bib_bbp017 crossref_primary_10_1146_annurev_biochem_77_062706_133317 crossref_primary_10_1155_2014_871676 crossref_primary_10_1016_j_jsb_2011_12_018 crossref_primary_10_1038_nprot_2010_5 crossref_primary_10_1007_s00894_012_1508_y crossref_primary_10_1038_ncomms2184 crossref_primary_10_1016_j_peptides_2011_10_011 crossref_primary_10_1186_1471_2334_13_568 crossref_primary_10_1016_j_bpj_2008_12_3898 crossref_primary_10_1002_prot_23181 crossref_primary_10_1002_prot_23183 crossref_primary_10_1534_genetics_112_144592 crossref_primary_10_1016_j_virol_2013_10_006 crossref_primary_10_1007_s11390_010_9308_2 crossref_primary_10_1016_j_jsb_2015_04_009 crossref_primary_10_1074_jbc_M112_395939 crossref_primary_10_1016_j_neulet_2010_06_050 crossref_primary_10_1113_jphysiol_2012_236885 crossref_primary_10_1158_0008_5472_CAN_11_0760 crossref_primary_10_1016_j_yjmcc_2024_12_011 crossref_primary_10_1007_s00894_012_1489_x crossref_primary_10_1371_journal_pcbi_1003298 crossref_primary_10_1002_prot_22262 crossref_primary_10_1016_j_mce_2012_08_013 crossref_primary_10_1016_j_bcp_2013_09_015 crossref_primary_10_1002_prot_23111 crossref_primary_10_1002_minf_201501010 crossref_primary_10_1016_j_sbi_2009_02_005 crossref_primary_10_1002_prot_22380 crossref_primary_10_1007_s00894_013_1981_y crossref_primary_10_1016_j_algal_2016_07_010 crossref_primary_10_1002_prot_24204 crossref_primary_10_1038_srep28969 crossref_primary_10_1007_s10989_018_9776_8 crossref_primary_10_1093_nar_gks1448 crossref_primary_10_1128_IAI_00513_09 crossref_primary_10_1186_1471_2105_13_332 crossref_primary_10_12688_f1000research_2_243_v3 crossref_primary_10_1111_mmi_12598 crossref_primary_10_1255_ejms_1040 crossref_primary_10_1134_S0026893319030154 crossref_primary_10_1093_nar_gku173 crossref_primary_10_1007_s11160_012_9266_6 crossref_primary_10_1371_journal_pone_0097645 crossref_primary_10_3390_ijms18071380 crossref_primary_10_1016_j_cell_2010_05_015 crossref_primary_10_12688_f1000research_2_243_v1 crossref_primary_10_12688_f1000research_2_243_v2 crossref_primary_10_1016_j_str_2010_04_007 crossref_primary_10_3109_02713683_2013_841950 crossref_primary_10_1186_1475_2875_13_382 crossref_primary_10_1016_j_omtn_2024_102115 crossref_primary_10_1371_journal_pone_0110041 crossref_primary_10_1016_j_csbj_2021_01_041 crossref_primary_10_1074_jbc_M112_377606 crossref_primary_10_1371_journal_pone_0025570 crossref_primary_10_32725_jab_2009_020 crossref_primary_10_1073_pnas_0812503106 crossref_primary_10_1074_jbc_M110_181180 crossref_primary_10_1016_j_abb_2012_03_003 crossref_primary_10_1038_nature21038 crossref_primary_10_1016_j_ygeno_2009_10_002 crossref_primary_10_1002_prot_25792 crossref_primary_10_1016_j_jtbi_2015_04_001 crossref_primary_10_1002_prot_24341 crossref_primary_10_1007_s13410_015_0454_5 crossref_primary_10_1371_journal_pntd_0003077 crossref_primary_10_1007_s10969_008_9048_5 crossref_primary_10_1002_ctm2_1789 crossref_primary_10_1002_prot_22962 crossref_primary_10_1016_j_jmgm_2011_04_008 crossref_primary_10_1371_journal_pone_0027981 crossref_primary_10_1002_prot_22288 crossref_primary_10_1080_21556660_2020_1734010 crossref_primary_10_1002_minf_201300025 crossref_primary_10_1016_j_jsb_2012_10_004 crossref_primary_10_1038_ncomms5098 crossref_primary_10_1186_1745_6150_6_49 crossref_primary_10_1021_jm900419a crossref_primary_10_1007_s10867_012_9280_x crossref_primary_10_1016_j_gene_2013_02_054 crossref_primary_10_1016_j_vaccine_2010_06_021 crossref_primary_10_3390_molecules29040832 crossref_primary_10_7717_peerj_3550 crossref_primary_10_1371_journal_pone_0016294 crossref_primary_10_1002_prot_22296 crossref_primary_10_1371_journal_pone_0035752 crossref_primary_10_1016_j_drudis_2008_11_010 crossref_primary_10_1002_prot_22578 crossref_primary_10_1080_07391102_2013_787370 crossref_primary_10_1186_s12976_015_0014_1 crossref_primary_10_1007_s00726_010_0721_1 crossref_primary_10_1002_elps_200900140 crossref_primary_10_1016_j_compbiomed_2011_04_018 crossref_primary_10_1080_07391102_2012_687526 crossref_primary_10_1371_journal_pone_0162344 crossref_primary_10_1073_pnas_1303047110 crossref_primary_10_1371_journal_pone_0003400 crossref_primary_10_1016_j_intimp_2017_04_028 crossref_primary_10_1007_s00239_011_9479_7 crossref_primary_10_1007_s10528_012_9565_6 crossref_primary_10_1007_s11693_011_9074_7 crossref_primary_10_1016_j_virol_2008_05_005 crossref_primary_10_1073_pnas_0905029106 crossref_primary_10_3390_molecules180910162 crossref_primary_10_1038_nprot_2009_2 crossref_primary_10_1016_j_bbamcr_2010_01_012 crossref_primary_10_1002_prot_22588 crossref_primary_10_1016_j_cell_2010_08_040 crossref_primary_10_1371_journal_pone_0002325 crossref_primary_10_1007_s00894_010_0915_1 crossref_primary_10_1016_j_meegid_2014_05_002 crossref_primary_10_1016_j_bmcl_2011_02_093 crossref_primary_10_1016_j_aquatox_2012_07_005 crossref_primary_10_1134_S0026893310030106 crossref_primary_10_1128_JVI_02176_09 crossref_primary_10_1093_nar_gkm251 crossref_primary_10_1016_j_pmpp_2025_102748 crossref_primary_10_1074_jbc_M111_290684 crossref_primary_10_1093_bioinformatics_btn248 crossref_primary_10_1186_1743_422X_7_326 crossref_primary_10_1371_journal_pone_0063897 crossref_primary_10_1093_bioinformatics_btp302 crossref_primary_10_1186_2042_5783_1_12 crossref_primary_10_1007_s11033_013_2779_9 crossref_primary_10_1080_07391102_2021_2002720 crossref_primary_10_1007_s10989_019_09908_1 crossref_primary_10_1016_j_plaphy_2011_01_028 crossref_primary_10_1016_j_jmb_2011_02_017 crossref_primary_10_1038_srep00323 crossref_primary_10_1002_prot_22476 crossref_primary_10_1016_j_abb_2012_11_007 crossref_primary_10_1002_prot_21945 crossref_primary_10_1007_s00894_018_3620_0 crossref_primary_10_1128_JVI_06425_11 crossref_primary_10_1016_j_jaut_2010_11_001 crossref_primary_10_1371_journal_pcbi_1001097 crossref_primary_10_1186_1471_2164_11_187 crossref_primary_10_1016_j_toxicon_2012_09_001 crossref_primary_10_1080_09687680903150027 crossref_primary_10_1007_s11033_011_1355_4 crossref_primary_10_1016_j_vetmic_2012_01_015 crossref_primary_10_1182_bloodadvances_2020002334 crossref_primary_10_1007_s10695_017_0461_1 crossref_primary_10_1038_ng_390 crossref_primary_10_1007_s13721_016_0142_5 crossref_primary_10_1111_jam_12942 crossref_primary_10_3390_ph18091340 crossref_primary_10_1110_ps_036442_108 crossref_primary_10_1016_j_bbapap_2009_07_023 crossref_primary_10_1186_1471_2172_12_69 crossref_primary_10_1016_j_ijbiomac_2021_08_143 crossref_primary_10_1089_cmb_2010_0078 crossref_primary_10_1002_prot_25639 crossref_primary_10_1016_j_bcp_2014_08_023 crossref_primary_10_1016_j_dci_2011_11_004 crossref_primary_10_1002_prot_22491 crossref_primary_10_1242_jcs_128694 |
| Cites_doi | 10.1006/jmbi.2001.4762 10.1073/pnas.96.10.5482 10.1093/bioinformatics/bti125 10.1126/science.1853201 10.1016/j.str.2004.10.015 10.1006/jmbi.2000.3615 10.1002/prot.10141 10.1002/prot.20720 10.1073/pnas.0305695101 10.1110/ps.03154503 10.1093/nar/gki633 10.1002/bip.360221211 10.1002/jcc.20011 10.1002/prot.20106 10.1016/0022-2836(81)90087-5 10.1126/science.1065659 10.1002/prot.10543 10.1002/prot.20308 10.1093/bioinformatics/14.10.846 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y 10.1038/73723 10.1038/358086a0 10.1038/88640 10.1126/science.1113801 10.1002/prot.20264 10.1093/nar/gkj059 10.1016/0022-2836(70)90057-4 10.1002/prot.20737 10.1002/prot.20724 10.1110/ps.9.1.197 10.1006/jmbi.1997.0959 10.1126/science.1066011 10.1186/1741-7007-5-17 10.1073/pnas.0509379103 10.1002/pro.5560070901 10.1002/pro.5560060317 10.1006/jmbi.1999.3091 10.1093/nar/28.1.235 10.1016/j.drudis.2006.05.012 10.1016/S0006-3495(03)74551-2 10.1529/biophysj.104.045385 10.1093/nar/gki524 10.1039/9781847552549 10.1093/bioinformatics/btg097 10.1093/nar/25.17.3389 10.1103/PhysRevLett.57.2607 |
| ContentType | Journal Article |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/prot.21702 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 117 |
| ExternalDocumentID | 10_1002_prot_21702 ark_67375_WNG_WKG5T35X_3 |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c2862-c8363a172dac3364baba9d36b57dd1dea1e59b22e073ee5beb2cebe9615a6a323 |
| ISSN | 0887-3585 |
| IngestDate | Sat Nov 29 06:06:05 EST 2025 Tue Nov 18 21:06:04 EST 2025 Sun Sep 21 06:19:14 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S8 |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2862-c8363a172dac3364baba9d36b57dd1dea1e59b22e073ee5beb2cebe9615a6a323 |
| Notes | istex:BBB368A36DA5E52893582E32B8A87A055D920994 KU Start-Up Fund - No. 06194 ark:/67375/WNG-WKG5T35X-3 ArticleID:PROT21702 NFGRF - No. 2302003 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.21702 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1002_prot_21702 crossref_citationtrail_10_1002_prot_21702 istex_primary_ark_67375_WNG_WKG5T35X_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2007 2007-00-00 |
| PublicationDateYYYYMMDD | 2007-01-01 |
| PublicationDate_xml | – year: 2007 text: 2007 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2007 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856. Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21: 951-960. Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48: 192-201. Zhou H, Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 2005; 58: 321-328. Wu ST, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402. Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001; 294: 93-96. Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164. Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 1998; 7: 1851-1856. Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol 2000; 297: 1003-1013. Kim DE, Chivian D, Malmstrom L, Baker D. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 2005; 61 ( Suppl 7): 193-200. Pal D, Eisenberg D. Inference of protein function from protein structure. Structure 2005; 13: 121-130. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225. Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 2004; 56: 502-518. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202. Vitkup D, Melamud E, Moult J, Sander C. Completeness in structural genomics. Nat Struct Biol 2001; 8: 559-566. Brenner SE, Levitt M. Expectations from structural genomics. Protein Sci 2000; 9: 197-200. Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its importance for gene function analysis. Nat Biotechnol 2000; 18: 283-287. Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53 ( Suppl 6): 352-368. Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 2004; 87: 2647-2655. Zhang Y, Hubner I, Arakaki A, Shakhnovich E, Skolnick J. On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci USA 2006; 103: 2605-2610. Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599. Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309. Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL,III. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins 2000; 41: 86-97. Canutescu AA, Shelenkov AA, Dunbrack RL,Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003; 12: 2001-2014. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147: 195-197. Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006; 11: 580-594. Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature 1992; 358: 86-89. Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871. Chen H, Zhou HX. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 2005; 33: 3193-3199. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164-170. Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A. Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 2005; 61 ( Suppl 7): 27-45. Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 1997; 6: 676-688. Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 2001; 310: 243-257. McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 2003; 19: 874-881. Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A. MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2006; 34: D291-D295. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453. Hubbard RE, editor. Structure-based drug discovery, 1st ed. Royal Society of Chemistry; Cambridge, UK, 2006. Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871. Stevens RC, Yokoyama S, Wilson IA. Global efforts in structural genomics. Science 2001; 294: 89-92. Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 1999; 96: 5482-5485. Zhang Y, Arakaki A, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 2005; 61 ( Suppl 7): 91-98. Liwo (10.1002/prot.21702-BIB19) 1999; 96 Bowie (10.1002/prot.21702-BIB12) 1991; 253 Terwilliger (10.1002/prot.21702-BIB1) 1998; 7 Wu (10.1002/prot.21702-BIB21) 2007; 5 Chen (10.1002/prot.21702-BIB33) 2005; 33 Shi (10.1002/prot.21702-BIB42) 2001; 310 Pal (10.1002/prot.21702-BIB11) 2005; 13 Zhang (10.1002/prot.21702-BIB46) 2004; 57 Karplus (10.1002/prot.21702-BIB26) 1998; 14 Domingues (10.1002/prot.21702-BIB31) 2000; 297 Tress (10.1002/prot.21702-BIB16) 2005; 61 McGuffin (10.1002/prot.21702-BIB44) 2003; 19 Zhang (10.1002/prot.21702-BIB22) 2004; 87 Zhang (10.1002/prot.21702-BIB37) 2004; 25 Zhang (10.1002/prot.21702-BIB36) 2002; 48 Jones (10.1002/prot.21702-BIB13) 1992; 358 Jones (10.1002/prot.21702-BIB27) 1999; 292 Bradley (10.1002/prot.21702-BIB18) 2005; 309 Altschul (10.1002/prot.21702-BIB25) 1997; 25 Berman (10.1002/prot.21702-BIB6) 2000; 28 Skolnick (10.1002/prot.21702-BIB32) 1997; 6 Tramontano (10.1002/prot.21702-BIB15) 2003; 53 Zhang (10.1002/prot.21702-BIB20) 2003; 85 Skolnick (10.1002/prot.21702-BIB24) 2004; 56 Soding (10.1002/prot.21702-BIB43) 2005; 21 Canutescu (10.1002/prot.21702-BIB40) 2003; 12 Zhou (10.1002/prot.21702-BIB45) 2005; 58 Kabsch (10.1002/prot.21702-BIB28) 1983; 22 Pieper (10.1002/prot.21702-BIB7) 2006; 34 Zhang (10.1002/prot.21702-BIB14) 2004; 101 Skolnick (10.1002/prot.21702-BIB5) 2000; 18 Brenner (10.1002/prot.21702-BIB2) 2000; 9 Needleman (10.1002/prot.21702-BIB29) 1970; 48 Hubbard (10.1002/prot.21702-BIB10) 2006 Cymborowski (10.1002/prot.21702-BIB47) Stevens (10.1002/prot.21702-BIB3) 2001; 294 Simons (10.1002/prot.21702-BIB17) 1997; 268 Klebe (10.1002/prot.21702-BIB9) 2006; 11 Zhang (10.1002/prot.21702-BIB23) 2005; 61 Zhang (10.1002/prot.21702-BIB38) 2005; 33 Zhang (10.1002/prot.21702-BIB34) 2006; 103 Swendsen (10.1002/prot.21702-BIB35) 1986; 57 Baker (10.1002/prot.21702-BIB4) 2001; 294 Smith (10.1002/prot.21702-BIB30) 1981; 147 Kim (10.1002/prot.21702-BIB41) 2005; 61 Vitkup (10.1002/prot.21702-BIB8) 2001; 8 Feig (10.1002/prot.21702-BIB39) 2000; 41 |
| References_xml | – reference: Vitkup D, Melamud E, Moult J, Sander C. Completeness in structural genomics. Nat Struct Biol 2001; 8: 559-566. – reference: Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48: 192-201. – reference: Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006; 11: 580-594. – reference: Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature 1992; 358: 86-89. – reference: Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 1997; 6: 676-688. – reference: Chen H, Zhou HX. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 2005; 33: 3193-3199. – reference: Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309. – reference: Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871. – reference: Wu ST, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17. – reference: Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202. – reference: Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21: 951-960. – reference: McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 2003; 19: 874-881. – reference: Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710. – reference: Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164-170. – reference: Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637. – reference: Kim DE, Chivian D, Malmstrom L, Baker D. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 2005; 61 ( Suppl 7): 193-200. – reference: Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its importance for gene function analysis. Nat Biotechnol 2000; 18: 283-287. – reference: Canutescu AA, Shelenkov AA, Dunbrack RL,Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003; 12: 2001-2014. – reference: Stevens RC, Yokoyama S, Wilson IA. Global efforts in structural genomics. Science 2001; 294: 89-92. – reference: Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 2004; 87: 2647-2655. – reference: Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856. – reference: Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225. – reference: Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL,III. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins 2000; 41: 86-97. – reference: Pal D, Eisenberg D. Inference of protein function from protein structure. Structure 2005; 13: 121-130. – reference: Hubbard RE, editor. Structure-based drug discovery, 1st ed. Royal Society of Chemistry; Cambridge, UK, 2006. – reference: Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 1999; 96: 5482-5485. – reference: Zhou H, Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 2005; 58: 321-328. – reference: Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242. – reference: Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53 ( Suppl 6): 352-368. – reference: Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164. – reference: Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609. – reference: Zhang Y, Arakaki A, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 2005; 61 ( Suppl 7): 91-98. – reference: Brenner SE, Levitt M. Expectations from structural genomics. Protein Sci 2000; 9: 197-200. – reference: Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 2004; 56: 502-518. – reference: Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 2001; 310: 243-257. – reference: Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001; 294: 93-96. – reference: Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453. – reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402. – reference: Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A. Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 2005; 61 ( Suppl 7): 27-45. – reference: Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 1998; 7: 1851-1856. – reference: Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599. – reference: Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol 2000; 297: 1003-1013. – reference: Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871. – reference: Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A. MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2006; 34: D291-D295. – reference: Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147: 195-197. – reference: Zhang Y, Hubner I, Arakaki A, Shakhnovich E, Skolnick J. On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci USA 2006; 103: 2605-2610. – volume: 310 start-page: 243 year: 2001 ident: 10.1002/prot.21702-BIB42 publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4762 – volume: 96 start-page: 5482 year: 1999 ident: 10.1002/prot.21702-BIB19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.10.5482 – volume: 21 start-page: 951 year: 2005 ident: 10.1002/prot.21702-BIB43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti125 – volume: 253 start-page: 164 year: 1991 ident: 10.1002/prot.21702-BIB12 publication-title: Science doi: 10.1126/science.1853201 – volume: 13 start-page: 121 year: 2005 ident: 10.1002/prot.21702-BIB11 publication-title: Structure doi: 10.1016/j.str.2004.10.015 – volume: 297 start-page: 1003 year: 2000 ident: 10.1002/prot.21702-BIB31 publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3615 – volume: 48 start-page: 192 year: 2002 ident: 10.1002/prot.21702-BIB36 publication-title: Proteins doi: 10.1002/prot.10141 – volume: 61 start-page: 27 year: 2005 ident: 10.1002/prot.21702-BIB16 publication-title: Proteins doi: 10.1002/prot.20720 – volume: 101 start-page: 7594 year: 2004 ident: 10.1002/prot.21702-BIB14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0305695101 – volume: 12 start-page: 2001 year: 2003 ident: 10.1002/prot.21702-BIB40 publication-title: Protein Sci doi: 10.1110/ps.03154503 – volume: 33 start-page: 3193 year: 2005 ident: 10.1002/prot.21702-BIB33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki633 – volume: 22 start-page: 2577 year: 1983 ident: 10.1002/prot.21702-BIB28 publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 25 start-page: 865 year: 2004 ident: 10.1002/prot.21702-BIB37 publication-title: J Comput Chem doi: 10.1002/jcc.20011 – volume: 56 start-page: 502 year: 2004 ident: 10.1002/prot.21702-BIB24 publication-title: Protein doi: 10.1002/prot.20106 – volume: 147 start-page: 195 year: 1981 ident: 10.1002/prot.21702-BIB30 publication-title: J Mol Biol doi: 10.1016/0022-2836(81)90087-5 – volume: 294 start-page: 93 year: 2001 ident: 10.1002/prot.21702-BIB4 publication-title: Science doi: 10.1126/science.1065659 – volume: 53 start-page: 352 year: 2003 ident: 10.1002/prot.21702-BIB15 publication-title: Proteins doi: 10.1002/prot.10543 – volume: 58 start-page: 321 year: 2005 ident: 10.1002/prot.21702-BIB45 publication-title: Proteins doi: 10.1002/prot.20308 – volume: 14 start-page: 846 year: 1998 ident: 10.1002/prot.21702-BIB26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.10.846 – volume: 41 start-page: 86 year: 2000 ident: 10.1002/prot.21702-BIB39 publication-title: Proteins doi: 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y – volume: 18 start-page: 283 year: 2000 ident: 10.1002/prot.21702-BIB5 publication-title: Nat Biotechnol doi: 10.1038/73723 – volume: 358 start-page: 86 year: 1992 ident: 10.1002/prot.21702-BIB13 publication-title: Nature doi: 10.1038/358086a0 – volume: 8 start-page: 559 year: 2001 ident: 10.1002/prot.21702-BIB8 publication-title: Nat Struct Biol doi: 10.1038/88640 – volume: 309 start-page: 1868 year: 2005 ident: 10.1002/prot.21702-BIB18 publication-title: Science doi: 10.1126/science.1113801 – volume: 57 start-page: 702 year: 2004 ident: 10.1002/prot.21702-BIB46 publication-title: Proteins doi: 10.1002/prot.20264 – volume: 34 start-page: d291 year: 2006 ident: 10.1002/prot.21702-BIB7 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj059 – volume: 48 start-page: 443 year: 1970 ident: 10.1002/prot.21702-BIB29 publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 – volume: 61 start-page: 193 year: 2005 ident: 10.1002/prot.21702-BIB41 publication-title: Proteins doi: 10.1002/prot.20737 – volume: 61 start-page: 91 year: 2005 ident: 10.1002/prot.21702-BIB23 publication-title: Proteins doi: 10.1002/prot.20724 – volume: 9 start-page: 197 year: 2000 ident: 10.1002/prot.21702-BIB2 publication-title: Protein Sci doi: 10.1110/ps.9.1.197 – volume: 268 start-page: 209 year: 1997 ident: 10.1002/prot.21702-BIB17 publication-title: J Mol Biol doi: 10.1006/jmbi.1997.0959 – volume: 294 start-page: 89 year: 2001 ident: 10.1002/prot.21702-BIB3 publication-title: Science doi: 10.1126/science.1066011 – ident: 10.1002/prot.21702-BIB47 – volume: 5 start-page: 17 year: 2007 ident: 10.1002/prot.21702-BIB21 publication-title: BMC Biol doi: 10.1186/1741-7007-5-17 – volume: 103 start-page: 2605 year: 2006 ident: 10.1002/prot.21702-BIB34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0509379103 – volume: 7 start-page: 1851 year: 1998 ident: 10.1002/prot.21702-BIB1 publication-title: Protein Sci doi: 10.1002/pro.5560070901 – volume: 6 start-page: 676 year: 1997 ident: 10.1002/prot.21702-BIB32 publication-title: Protein Sci doi: 10.1002/pro.5560060317 – volume: 292 start-page: 195 year: 1999 ident: 10.1002/prot.21702-BIB27 publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3091 – volume: 28 start-page: 235 year: 2000 ident: 10.1002/prot.21702-BIB6 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.235 – volume: 11 start-page: 580 year: 2006 ident: 10.1002/prot.21702-BIB9 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2006.05.012 – volume: 85 start-page: 1145 year: 2003 ident: 10.1002/prot.21702-BIB20 publication-title: Biophys J doi: 10.1016/S0006-3495(03)74551-2 – volume: 87 start-page: 2647 year: 2004 ident: 10.1002/prot.21702-BIB22 publication-title: Biophys J doi: 10.1529/biophysj.104.045385 – volume: 33 start-page: 2302 year: 2005 ident: 10.1002/prot.21702-BIB38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki524 – volume-title: Structure-based drug discovery year: 2006 ident: 10.1002/prot.21702-BIB10 doi: 10.1039/9781847552549 – volume: 19 start-page: 874 year: 2003 ident: 10.1002/prot.21702-BIB44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg097 – volume: 25 start-page: 3389 year: 1997 ident: 10.1002/prot.21702-BIB25 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 57 start-page: 2607 year: 1986 ident: 10.1002/prot.21702-BIB35 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.57.2607 |
| SSID | ssj0006936 |
| Score | 2.3338645 |
| SourceID | crossref istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108 |
| SubjectTerms | CASP free modeling I-TASSER template refinement threading |
| Title | Template-based modeling and free modeling by I-TASSER in CASP7 |
| URI | https://api.istex.fr/ark:/67375/WNG-WKG5T35X-3/fulltext.pdf |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZsrG9jK1dWfeFYKOwB3e2FMvyyyDr2m6shNCkNHsyknyBsNQJWVbS_2F_9E6W7Lj7gA62F2OEsLHudPfT-e53hLwSwEKQPApAqzzo2jRXHZo0iLht9NJlochLEteTpN-X43E6aLW-V7Uwl7OkKOR6nS7-q6hxDIVtS2f_Qtz1Q3EA71HoeEWx4_VmgoeLxQwRZGAdVO5a3VSViJMlwGYEkefHYNQbDg9Py-K_3nCQNMHqwHI4-Hi045n95iLW1hmWSSE-9VNP556AddVInq9j0Z-Vd49VdCH5x9Yrdv149sFZ19BSv0Y-eunNr-vU4tVsKBvGNAplwy9HrsbzF5PvKGQtq8U-Hq9CtnFs1c_8n_xdnYWoll9sWlsSZ-f94-z803E84vE447dIhyVxKtuk8_706Oyk9uwiLVtO1p9W092yN5v3XwM4HbtX1w3EMnpA7vujBu05FXlIWlBske1eoVbziyu6R8vk3_Kvyha58666u3tQtQDcJm-v6xKtNIei0KnVpc2IvqKVLtFpQUtdekTOjg5HBx8C33AjMAxPtoGRXHCFkDZXhnPR1UqrNOdCx0meRzmoCOJUMwboFwBiDZoZNAIpomIlFGd8h7SLeQGPCZUWqYrIJLmcdCegEdgbHgFufuDAhdklr6tVyoxno7dNUWaZ49FmmV3RrFzRXfKynrtwHCy_nbVXLnY95U_ifXLTiU_JPRfJtwG3Z6SNGw2ek9vmcjX9unzhleMHaaqJrw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-based+modeling+and+free+modeling+by+I-TASSER+in+CASP7&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Zhang%2C+Yang&rft.date=2007&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=69&rft.issue=S8&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1002%2Fprot.21702&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WKG5T35X_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |