Template-based modeling and free modeling by I-TASSER in CASP7

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics Jg. 69; H. S8; S. 108 - 117
1. Verfasser: Zhang, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 2007
Schlagworte:
ISSN:0887-3585, 1097-0134
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Author Zhang, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  email: yzhang@ku.edu
  organization: Center for Bioinformatics, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047
BookMark eNptj8FKAzEURYNUsK1u_IJZC6lJXpPMbIRSai0WFVupu_AyeZXR6UzJzML-vdaKgri6cLnnwumxTlVXxNi5FAMphLrcxrodKGmFOmJdKTLLhYRhh3VFmloOOtUnrNc0r0IIk4HpsqslbbYltsQ9NhSSTR2oLKqXBKuQrCPRb-N3yYwvR4vF5DEpqmQ8WjzYU3a8xrKhs-_ss6fryXJ8w-f309l4NOe5So3ieQoGUFoVMAcwQ48eswDGaxuCDISSdOaVImGBSHvyKidPmZEaDYKCPrs4_OaxbppIa7eNxQbjzknh9uZub-6-zD_H4s84L1psi7pqIxbl_wg_IEXT0vvPOcY3ZyxY7VZ3U7e6neol6GcH8AGP_GyJ
CitedBy_id crossref_primary_10_1002_prot_22533
crossref_primary_10_1016_j_jpdc_2011_10_005
crossref_primary_10_1093_hmg_ddp551
crossref_primary_10_1371_journal_pone_0096276
crossref_primary_10_1016_j_asoc_2013_10_029
crossref_primary_10_1074_jbc_M112_442053
crossref_primary_10_1016_j_jmb_2007_12_022
crossref_primary_10_1002_anie_201203603
crossref_primary_10_1016_j_bbabio_2011_10_005
crossref_primary_10_1007_s00705_011_0928_9
crossref_primary_10_1155_2021_9940010
crossref_primary_10_1074_jbc_M114_627356
crossref_primary_10_1002_jcc_21001
crossref_primary_10_1111_are_12818
crossref_primary_10_1002_prot_24167
crossref_primary_10_1016_j_sbi_2008_02_004
crossref_primary_10_1002_prot_22781
crossref_primary_10_1002_prot_26585
crossref_primary_10_1016_j_compbiolchem_2014_10_001
crossref_primary_10_1016_j_bbamem_2011_01_003
crossref_primary_10_1016_j_bbapap_2011_05_009
crossref_primary_10_1186_1471_2164_10_445
crossref_primary_10_1016_j_micpath_2017_08_046
crossref_primary_10_12688_f1000research_2_211_v1
crossref_primary_10_1074_jbc_M109_072108
crossref_primary_10_3390_molecules25112467
crossref_primary_10_1038_s41596_022_00728_0
crossref_primary_10_1016_j_sbi_2009_04_009
crossref_primary_10_1186_s12859_017_1755_0
crossref_primary_10_1155_2013_543028
crossref_primary_10_1111_j_1365_2958_2010_07196_x
crossref_primary_10_1016_j_matbio_2014_06_005
crossref_primary_10_1186_1756_3305_6_150
crossref_primary_10_1371_journal_pone_0018414
crossref_primary_10_1016_j_bbamcr_2010_03_005
crossref_primary_10_1002_prot_24733
crossref_primary_10_1007_s11033_012_2145_3
crossref_primary_10_1016_j_str_2011_04_005
crossref_primary_10_1002_pro_2050
crossref_primary_10_1016_j_str_2011_09_022
crossref_primary_10_1002_ange_201204109
crossref_primary_10_5812_hepatmon_6184
crossref_primary_10_1002_prot_22438
crossref_primary_10_1091_mbc_e10_06_0551
crossref_primary_10_4103_tjo_tjo_16_19
crossref_primary_10_1016_j_fob_2013_09_006
crossref_primary_10_1007_s10570_013_9933_3
crossref_primary_10_1093_molbev_msp088
crossref_primary_10_1002_prot_24065
crossref_primary_10_1016_j_str_2012_03_009
crossref_primary_10_1016_j_ijbiomac_2012_10_032
crossref_primary_10_1371_journal_pone_0074132
crossref_primary_10_1016_j_ygeno_2012_06_012
crossref_primary_10_1038_s41598_018_33215_2
crossref_primary_10_1227_NEU_0000000000000589
crossref_primary_10_1002_prot_22320
crossref_primary_10_3109_1354750X_2012_699556
crossref_primary_10_1002_mef2_96
crossref_primary_10_1016_j_exger_2014_05_007
crossref_primary_10_1111_j_1365_2958_2009_06746_x
crossref_primary_10_1371_journal_pone_0069464
crossref_primary_10_1016_j_jsb_2012_04_015
crossref_primary_10_1002_anie_201204109
crossref_primary_10_1186_1756_3305_5_224
crossref_primary_10_1007_s10534_014_9785_9
crossref_primary_10_3389_fendo_2015_00140
crossref_primary_10_1093_nar_gkv885
crossref_primary_10_1186_2193_1801_2_17
crossref_primary_10_1074_jbc_M800036200
crossref_primary_10_1016_j_dnarep_2009_09_010
crossref_primary_10_1111_omi_12414
crossref_primary_10_1002_bies_202400155
crossref_primary_10_1186_1477_7827_11_25
crossref_primary_10_1007_s00894_011_1320_0
crossref_primary_10_1109_MCI_2012_2215134
crossref_primary_10_1002_jcc_23315
crossref_primary_10_1016_j_febslet_2008_02_019
crossref_primary_10_1016_j_enzmictec_2009_05_010
crossref_primary_10_1007_s00894_010_0693_9
crossref_primary_10_1016_j_ygcen_2014_05_028
crossref_primary_10_1038_srep25406
crossref_primary_10_3390_pharmaceutics15010083
crossref_primary_10_1002_prot_22738
crossref_primary_10_1016_j_bmcl_2016_01_045
crossref_primary_10_1002_adbi_202300122
crossref_primary_10_1016_j_jmb_2009_07_049
crossref_primary_10_1529_biophysj_107_124016
crossref_primary_10_1016_j_jbiotec_2014_01_037
crossref_primary_10_1016_j_compbiolchem_2017_03_007
crossref_primary_10_1007_s12539_015_0268_7
crossref_primary_10_1080_10826068_2015_1015564
crossref_primary_10_1111_1574_6941_12153
crossref_primary_10_1371_journal_pone_0033863
crossref_primary_10_1371_journal_pone_0048689
crossref_primary_10_1002_prot_22508
crossref_primary_10_1017_S0967199418000102
crossref_primary_10_1002_ange_201203603
crossref_primary_10_1128_JVI_00888_13
crossref_primary_10_1186_1475_2875_10_318
crossref_primary_10_1016_j_ajhg_2010_06_004
crossref_primary_10_1016_j_pep_2017_03_011
crossref_primary_10_1016_j_ymeth_2014_08_017
crossref_primary_10_3390_biom11121788
crossref_primary_10_1016_j_virol_2012_05_011
crossref_primary_10_1186_1472_6807_9_28
crossref_primary_10_1016_j_procbio_2013_07_009
crossref_primary_10_1128_mSystems_00232_20
crossref_primary_10_1093_nar_gkv342
crossref_primary_10_1002_prot_23163
crossref_primary_10_1002_prot_23165
crossref_primary_10_1002_prot_23160
crossref_primary_10_3390_pathogens10091082
crossref_primary_10_1016_j_gene_2021_145554
crossref_primary_10_1007_s00709_012_0463_x
crossref_primary_10_7717_peerj_3139
crossref_primary_10_1016_j_dci_2012_09_002
crossref_primary_10_1074_jbc_M110_106476
crossref_primary_10_1128_JB_00093_12
crossref_primary_10_3389_feart_2023_1253495
crossref_primary_10_3892_ijmm_2012_1051
crossref_primary_10_1128_JVI_02156_09
crossref_primary_10_1016_j_jmgm_2017_09_019
crossref_primary_10_1016_j_bjp_2017_07_006
crossref_primary_10_1002_dvdy_21873
crossref_primary_10_1016_j_bbagen_2011_09_014
crossref_primary_10_1161_CIRCGENETICS_111_961854
crossref_primary_10_1186_1471_2105_9_40
crossref_primary_10_1074_jbc_M110_133140
crossref_primary_10_1016_j_virol_2011_07_012
crossref_primary_10_1002_prot_24944
crossref_primary_10_1016_j_coviro_2015_03_013
crossref_primary_10_1007_s00253_013_5047_y
crossref_primary_10_1016_j_bpj_2011_10_046
crossref_primary_10_1140_epjd_e2008_00086_2
crossref_primary_10_1007_s00412_011_0355_4
crossref_primary_10_1016_j_gene_2012_09_086
crossref_primary_10_5012_bkcs_2012_33_5_1597
crossref_primary_10_1007_s12033_013_9677_1
crossref_primary_10_1093_bib_bbp017
crossref_primary_10_1146_annurev_biochem_77_062706_133317
crossref_primary_10_1155_2014_871676
crossref_primary_10_1016_j_jsb_2011_12_018
crossref_primary_10_1038_nprot_2010_5
crossref_primary_10_1007_s00894_012_1508_y
crossref_primary_10_1038_ncomms2184
crossref_primary_10_1016_j_peptides_2011_10_011
crossref_primary_10_1186_1471_2334_13_568
crossref_primary_10_1016_j_bpj_2008_12_3898
crossref_primary_10_1002_prot_23181
crossref_primary_10_1002_prot_23183
crossref_primary_10_1534_genetics_112_144592
crossref_primary_10_1016_j_virol_2013_10_006
crossref_primary_10_1007_s11390_010_9308_2
crossref_primary_10_1016_j_jsb_2015_04_009
crossref_primary_10_1074_jbc_M112_395939
crossref_primary_10_1016_j_neulet_2010_06_050
crossref_primary_10_1113_jphysiol_2012_236885
crossref_primary_10_1158_0008_5472_CAN_11_0760
crossref_primary_10_1016_j_yjmcc_2024_12_011
crossref_primary_10_1007_s00894_012_1489_x
crossref_primary_10_1371_journal_pcbi_1003298
crossref_primary_10_1002_prot_22262
crossref_primary_10_1016_j_mce_2012_08_013
crossref_primary_10_1016_j_bcp_2013_09_015
crossref_primary_10_1002_prot_23111
crossref_primary_10_1002_minf_201501010
crossref_primary_10_1016_j_sbi_2009_02_005
crossref_primary_10_1002_prot_22380
crossref_primary_10_1007_s00894_013_1981_y
crossref_primary_10_1016_j_algal_2016_07_010
crossref_primary_10_1002_prot_24204
crossref_primary_10_1038_srep28969
crossref_primary_10_1007_s10989_018_9776_8
crossref_primary_10_1093_nar_gks1448
crossref_primary_10_1128_IAI_00513_09
crossref_primary_10_1186_1471_2105_13_332
crossref_primary_10_12688_f1000research_2_243_v3
crossref_primary_10_1111_mmi_12598
crossref_primary_10_1255_ejms_1040
crossref_primary_10_1134_S0026893319030154
crossref_primary_10_1093_nar_gku173
crossref_primary_10_1007_s11160_012_9266_6
crossref_primary_10_1371_journal_pone_0097645
crossref_primary_10_3390_ijms18071380
crossref_primary_10_1016_j_cell_2010_05_015
crossref_primary_10_12688_f1000research_2_243_v1
crossref_primary_10_12688_f1000research_2_243_v2
crossref_primary_10_1016_j_str_2010_04_007
crossref_primary_10_3109_02713683_2013_841950
crossref_primary_10_1186_1475_2875_13_382
crossref_primary_10_1016_j_omtn_2024_102115
crossref_primary_10_1371_journal_pone_0110041
crossref_primary_10_1016_j_csbj_2021_01_041
crossref_primary_10_1074_jbc_M112_377606
crossref_primary_10_1371_journal_pone_0025570
crossref_primary_10_32725_jab_2009_020
crossref_primary_10_1073_pnas_0812503106
crossref_primary_10_1074_jbc_M110_181180
crossref_primary_10_1016_j_abb_2012_03_003
crossref_primary_10_1038_nature21038
crossref_primary_10_1016_j_ygeno_2009_10_002
crossref_primary_10_1002_prot_25792
crossref_primary_10_1016_j_jtbi_2015_04_001
crossref_primary_10_1002_prot_24341
crossref_primary_10_1007_s13410_015_0454_5
crossref_primary_10_1371_journal_pntd_0003077
crossref_primary_10_1007_s10969_008_9048_5
crossref_primary_10_1002_ctm2_1789
crossref_primary_10_1002_prot_22962
crossref_primary_10_1016_j_jmgm_2011_04_008
crossref_primary_10_1371_journal_pone_0027981
crossref_primary_10_1002_prot_22288
crossref_primary_10_1080_21556660_2020_1734010
crossref_primary_10_1002_minf_201300025
crossref_primary_10_1016_j_jsb_2012_10_004
crossref_primary_10_1038_ncomms5098
crossref_primary_10_1186_1745_6150_6_49
crossref_primary_10_1021_jm900419a
crossref_primary_10_1007_s10867_012_9280_x
crossref_primary_10_1016_j_gene_2013_02_054
crossref_primary_10_1016_j_vaccine_2010_06_021
crossref_primary_10_3390_molecules29040832
crossref_primary_10_7717_peerj_3550
crossref_primary_10_1371_journal_pone_0016294
crossref_primary_10_1002_prot_22296
crossref_primary_10_1371_journal_pone_0035752
crossref_primary_10_1016_j_drudis_2008_11_010
crossref_primary_10_1002_prot_22578
crossref_primary_10_1080_07391102_2013_787370
crossref_primary_10_1186_s12976_015_0014_1
crossref_primary_10_1007_s00726_010_0721_1
crossref_primary_10_1002_elps_200900140
crossref_primary_10_1016_j_compbiomed_2011_04_018
crossref_primary_10_1080_07391102_2012_687526
crossref_primary_10_1371_journal_pone_0162344
crossref_primary_10_1073_pnas_1303047110
crossref_primary_10_1371_journal_pone_0003400
crossref_primary_10_1016_j_intimp_2017_04_028
crossref_primary_10_1007_s00239_011_9479_7
crossref_primary_10_1007_s10528_012_9565_6
crossref_primary_10_1007_s11693_011_9074_7
crossref_primary_10_1016_j_virol_2008_05_005
crossref_primary_10_1073_pnas_0905029106
crossref_primary_10_3390_molecules180910162
crossref_primary_10_1038_nprot_2009_2
crossref_primary_10_1016_j_bbamcr_2010_01_012
crossref_primary_10_1002_prot_22588
crossref_primary_10_1016_j_cell_2010_08_040
crossref_primary_10_1371_journal_pone_0002325
crossref_primary_10_1007_s00894_010_0915_1
crossref_primary_10_1016_j_meegid_2014_05_002
crossref_primary_10_1016_j_bmcl_2011_02_093
crossref_primary_10_1016_j_aquatox_2012_07_005
crossref_primary_10_1134_S0026893310030106
crossref_primary_10_1128_JVI_02176_09
crossref_primary_10_1093_nar_gkm251
crossref_primary_10_1016_j_pmpp_2025_102748
crossref_primary_10_1074_jbc_M111_290684
crossref_primary_10_1093_bioinformatics_btn248
crossref_primary_10_1186_1743_422X_7_326
crossref_primary_10_1371_journal_pone_0063897
crossref_primary_10_1093_bioinformatics_btp302
crossref_primary_10_1186_2042_5783_1_12
crossref_primary_10_1007_s11033_013_2779_9
crossref_primary_10_1080_07391102_2021_2002720
crossref_primary_10_1007_s10989_019_09908_1
crossref_primary_10_1016_j_plaphy_2011_01_028
crossref_primary_10_1016_j_jmb_2011_02_017
crossref_primary_10_1038_srep00323
crossref_primary_10_1002_prot_22476
crossref_primary_10_1016_j_abb_2012_11_007
crossref_primary_10_1002_prot_21945
crossref_primary_10_1007_s00894_018_3620_0
crossref_primary_10_1128_JVI_06425_11
crossref_primary_10_1016_j_jaut_2010_11_001
crossref_primary_10_1371_journal_pcbi_1001097
crossref_primary_10_1186_1471_2164_11_187
crossref_primary_10_1016_j_toxicon_2012_09_001
crossref_primary_10_1080_09687680903150027
crossref_primary_10_1007_s11033_011_1355_4
crossref_primary_10_1016_j_vetmic_2012_01_015
crossref_primary_10_1182_bloodadvances_2020002334
crossref_primary_10_1007_s10695_017_0461_1
crossref_primary_10_1038_ng_390
crossref_primary_10_1007_s13721_016_0142_5
crossref_primary_10_1111_jam_12942
crossref_primary_10_3390_ph18091340
crossref_primary_10_1110_ps_036442_108
crossref_primary_10_1016_j_bbapap_2009_07_023
crossref_primary_10_1186_1471_2172_12_69
crossref_primary_10_1016_j_ijbiomac_2021_08_143
crossref_primary_10_1089_cmb_2010_0078
crossref_primary_10_1002_prot_25639
crossref_primary_10_1016_j_bcp_2014_08_023
crossref_primary_10_1016_j_dci_2011_11_004
crossref_primary_10_1002_prot_22491
crossref_primary_10_1242_jcs_128694
Cites_doi 10.1006/jmbi.2001.4762
10.1073/pnas.96.10.5482
10.1093/bioinformatics/bti125
10.1126/science.1853201
10.1016/j.str.2004.10.015
10.1006/jmbi.2000.3615
10.1002/prot.10141
10.1002/prot.20720
10.1073/pnas.0305695101
10.1110/ps.03154503
10.1093/nar/gki633
10.1002/bip.360221211
10.1002/jcc.20011
10.1002/prot.20106
10.1016/0022-2836(81)90087-5
10.1126/science.1065659
10.1002/prot.10543
10.1002/prot.20308
10.1093/bioinformatics/14.10.846
10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y
10.1038/73723
10.1038/358086a0
10.1038/88640
10.1126/science.1113801
10.1002/prot.20264
10.1093/nar/gkj059
10.1016/0022-2836(70)90057-4
10.1002/prot.20737
10.1002/prot.20724
10.1110/ps.9.1.197
10.1006/jmbi.1997.0959
10.1126/science.1066011
10.1186/1741-7007-5-17
10.1073/pnas.0509379103
10.1002/pro.5560070901
10.1002/pro.5560060317
10.1006/jmbi.1999.3091
10.1093/nar/28.1.235
10.1016/j.drudis.2006.05.012
10.1016/S0006-3495(03)74551-2
10.1529/biophysj.104.045385
10.1093/nar/gki524
10.1039/9781847552549
10.1093/bioinformatics/btg097
10.1093/nar/25.17.3389
10.1103/PhysRevLett.57.2607
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/prot.21702
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 117
ExternalDocumentID 10_1002_prot_21702
ark_67375_WNG_WKG5T35X_3
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c2862-c8363a172dac3364baba9d36b57dd1dea1e59b22e073ee5beb2cebe9615a6a323
ISSN 0887-3585
IngestDate Sat Nov 29 06:06:05 EST 2025
Tue Nov 18 21:06:04 EST 2025
Sun Sep 21 06:19:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S8
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2862-c8363a172dac3364baba9d36b57dd1dea1e59b22e073ee5beb2cebe9615a6a323
Notes istex:BBB368A36DA5E52893582E32B8A87A055D920994
KU Start-Up Fund - No. 06194
ark:/67375/WNG-WKG5T35X-3
ArticleID:PROT21702
NFGRF - No. 2302003
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.21702
PageCount 10
ParticipantIDs crossref_primary_10_1002_prot_21702
crossref_citationtrail_10_1002_prot_21702
istex_primary_ark_67375_WNG_WKG5T35X_3
PublicationCentury 2000
PublicationDate 2007
2007-00-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856.
Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21: 951-960.
Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48: 192-201.
Zhou H, Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 2005; 58: 321-328.
Wu ST, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17.
Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710.
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001; 294: 93-96.
Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164.
Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 1998; 7: 1851-1856.
Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol 2000; 297: 1003-1013.
Kim DE, Chivian D, Malmstrom L, Baker D. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 2005; 61 ( Suppl 7): 193-200.
Pal D, Eisenberg D. Inference of protein function from protein structure. Structure 2005; 13: 121-130.
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225.
Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 2004; 56: 502-518.
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
Vitkup D, Melamud E, Moult J, Sander C. Completeness in structural genomics. Nat Struct Biol 2001; 8: 559-566.
Brenner SE, Levitt M. Expectations from structural genomics. Protein Sci 2000; 9: 197-200.
Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its importance for gene function analysis. Nat Biotechnol 2000; 18: 283-287.
Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53 ( Suppl 6): 352-368.
Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 2004; 87: 2647-2655.
Zhang Y, Hubner I, Arakaki A, Shakhnovich E, Skolnick J. On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci USA 2006; 103: 2605-2610.
Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599.
Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609.
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309.
Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL,III. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins 2000; 41: 86-97.
Canutescu AA, Shelenkov AA, Dunbrack RL,Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003; 12: 2001-2014.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242.
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147: 195-197.
Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006; 11: 580-594.
Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature 1992; 358: 86-89.
Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871.
Chen H, Zhou HX. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 2005; 33: 3193-3199.
Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164-170.
Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A. Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 2005; 61 ( Suppl 7): 27-45.
Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 1997; 6: 676-688.
Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 2001; 310: 243-257.
McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 2003; 19: 874-881.
Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A. MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2006; 34: D291-D295.
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453.
Hubbard RE, editor. Structure-based drug discovery, 1st ed. Royal Society of Chemistry; Cambridge, UK, 2006.
Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871.
Stevens RC, Yokoyama S, Wilson IA. Global efforts in structural genomics. Science 2001; 294: 89-92.
Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 1999; 96: 5482-5485.
Zhang Y, Arakaki A, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 2005; 61 ( Suppl 7): 91-98.
Liwo (10.1002/prot.21702-BIB19) 1999; 96
Bowie (10.1002/prot.21702-BIB12) 1991; 253
Terwilliger (10.1002/prot.21702-BIB1) 1998; 7
Wu (10.1002/prot.21702-BIB21) 2007; 5
Chen (10.1002/prot.21702-BIB33) 2005; 33
Shi (10.1002/prot.21702-BIB42) 2001; 310
Pal (10.1002/prot.21702-BIB11) 2005; 13
Zhang (10.1002/prot.21702-BIB46) 2004; 57
Karplus (10.1002/prot.21702-BIB26) 1998; 14
Domingues (10.1002/prot.21702-BIB31) 2000; 297
Tress (10.1002/prot.21702-BIB16) 2005; 61
McGuffin (10.1002/prot.21702-BIB44) 2003; 19
Zhang (10.1002/prot.21702-BIB22) 2004; 87
Zhang (10.1002/prot.21702-BIB37) 2004; 25
Zhang (10.1002/prot.21702-BIB36) 2002; 48
Jones (10.1002/prot.21702-BIB13) 1992; 358
Jones (10.1002/prot.21702-BIB27) 1999; 292
Bradley (10.1002/prot.21702-BIB18) 2005; 309
Altschul (10.1002/prot.21702-BIB25) 1997; 25
Berman (10.1002/prot.21702-BIB6) 2000; 28
Skolnick (10.1002/prot.21702-BIB32) 1997; 6
Tramontano (10.1002/prot.21702-BIB15) 2003; 53
Zhang (10.1002/prot.21702-BIB20) 2003; 85
Skolnick (10.1002/prot.21702-BIB24) 2004; 56
Soding (10.1002/prot.21702-BIB43) 2005; 21
Canutescu (10.1002/prot.21702-BIB40) 2003; 12
Zhou (10.1002/prot.21702-BIB45) 2005; 58
Kabsch (10.1002/prot.21702-BIB28) 1983; 22
Pieper (10.1002/prot.21702-BIB7) 2006; 34
Zhang (10.1002/prot.21702-BIB14) 2004; 101
Skolnick (10.1002/prot.21702-BIB5) 2000; 18
Brenner (10.1002/prot.21702-BIB2) 2000; 9
Needleman (10.1002/prot.21702-BIB29) 1970; 48
Hubbard (10.1002/prot.21702-BIB10) 2006
Cymborowski (10.1002/prot.21702-BIB47)
Stevens (10.1002/prot.21702-BIB3) 2001; 294
Simons (10.1002/prot.21702-BIB17) 1997; 268
Klebe (10.1002/prot.21702-BIB9) 2006; 11
Zhang (10.1002/prot.21702-BIB23) 2005; 61
Zhang (10.1002/prot.21702-BIB38) 2005; 33
Zhang (10.1002/prot.21702-BIB34) 2006; 103
Swendsen (10.1002/prot.21702-BIB35) 1986; 57
Baker (10.1002/prot.21702-BIB4) 2001; 294
Smith (10.1002/prot.21702-BIB30) 1981; 147
Kim (10.1002/prot.21702-BIB41) 2005; 61
Vitkup (10.1002/prot.21702-BIB8) 2001; 8
Feig (10.1002/prot.21702-BIB39) 2000; 41
References_xml – reference: Vitkup D, Melamud E, Moult J, Sander C. Completeness in structural genomics. Nat Struct Biol 2001; 8: 559-566.
– reference: Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48: 192-201.
– reference: Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006; 11: 580-594.
– reference: Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature 1992; 358: 86-89.
– reference: Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 1997; 6: 676-688.
– reference: Chen H, Zhou HX. Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 2005; 33: 3193-3199.
– reference: Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309.
– reference: Zhang Y, Skolnick J. SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871.
– reference: Wu ST, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17.
– reference: Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
– reference: Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21: 951-960.
– reference: McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 2003; 19: 874-881.
– reference: Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710.
– reference: Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164-170.
– reference: Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
– reference: Kim DE, Chivian D, Malmstrom L, Baker D. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 2005; 61 ( Suppl 7): 193-200.
– reference: Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its importance for gene function analysis. Nat Biotechnol 2000; 18: 283-287.
– reference: Canutescu AA, Shelenkov AA, Dunbrack RL,Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003; 12: 2001-2014.
– reference: Stevens RC, Yokoyama S, Wilson IA. Global efforts in structural genomics. Science 2001; 294: 89-92.
– reference: Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 2004; 87: 2647-2655.
– reference: Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856.
– reference: Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225.
– reference: Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL,III. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins 2000; 41: 86-97.
– reference: Pal D, Eisenberg D. Inference of protein function from protein structure. Structure 2005; 13: 121-130.
– reference: Hubbard RE, editor. Structure-based drug discovery, 1st ed. Royal Society of Chemistry; Cambridge, UK, 2006.
– reference: Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 1999; 96: 5482-5485.
– reference: Zhou H, Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 2005; 58: 321-328.
– reference: Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242.
– reference: Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53 ( Suppl 6): 352-368.
– reference: Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164.
– reference: Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609.
– reference: Zhang Y, Arakaki A, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 2005; 61 ( Suppl 7): 91-98.
– reference: Brenner SE, Levitt M. Expectations from structural genomics. Protein Sci 2000; 9: 197-200.
– reference: Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 2004; 56: 502-518.
– reference: Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 2001; 310: 243-257.
– reference: Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001; 294: 93-96.
– reference: Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453.
– reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
– reference: Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A. Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 2005; 61 ( Suppl 7): 27-45.
– reference: Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci 1998; 7: 1851-1856.
– reference: Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599.
– reference: Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol 2000; 297: 1003-1013.
– reference: Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871.
– reference: Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A. MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2006; 34: D291-D295.
– reference: Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147: 195-197.
– reference: Zhang Y, Hubner I, Arakaki A, Shakhnovich E, Skolnick J. On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci USA 2006; 103: 2605-2610.
– volume: 310
  start-page: 243
  year: 2001
  ident: 10.1002/prot.21702-BIB42
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4762
– volume: 96
  start-page: 5482
  year: 1999
  ident: 10.1002/prot.21702-BIB19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.10.5482
– volume: 21
  start-page: 951
  year: 2005
  ident: 10.1002/prot.21702-BIB43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti125
– volume: 253
  start-page: 164
  year: 1991
  ident: 10.1002/prot.21702-BIB12
  publication-title: Science
  doi: 10.1126/science.1853201
– volume: 13
  start-page: 121
  year: 2005
  ident: 10.1002/prot.21702-BIB11
  publication-title: Structure
  doi: 10.1016/j.str.2004.10.015
– volume: 297
  start-page: 1003
  year: 2000
  ident: 10.1002/prot.21702-BIB31
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3615
– volume: 48
  start-page: 192
  year: 2002
  ident: 10.1002/prot.21702-BIB36
  publication-title: Proteins
  doi: 10.1002/prot.10141
– volume: 61
  start-page: 27
  year: 2005
  ident: 10.1002/prot.21702-BIB16
  publication-title: Proteins
  doi: 10.1002/prot.20720
– volume: 101
  start-page: 7594
  year: 2004
  ident: 10.1002/prot.21702-BIB14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0305695101
– volume: 12
  start-page: 2001
  year: 2003
  ident: 10.1002/prot.21702-BIB40
  publication-title: Protein Sci
  doi: 10.1110/ps.03154503
– volume: 33
  start-page: 3193
  year: 2005
  ident: 10.1002/prot.21702-BIB33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki633
– volume: 22
  start-page: 2577
  year: 1983
  ident: 10.1002/prot.21702-BIB28
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 25
  start-page: 865
  year: 2004
  ident: 10.1002/prot.21702-BIB37
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20011
– volume: 56
  start-page: 502
  year: 2004
  ident: 10.1002/prot.21702-BIB24
  publication-title: Protein
  doi: 10.1002/prot.20106
– volume: 147
  start-page: 195
  year: 1981
  ident: 10.1002/prot.21702-BIB30
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(81)90087-5
– volume: 294
  start-page: 93
  year: 2001
  ident: 10.1002/prot.21702-BIB4
  publication-title: Science
  doi: 10.1126/science.1065659
– volume: 53
  start-page: 352
  year: 2003
  ident: 10.1002/prot.21702-BIB15
  publication-title: Proteins
  doi: 10.1002/prot.10543
– volume: 58
  start-page: 321
  year: 2005
  ident: 10.1002/prot.21702-BIB45
  publication-title: Proteins
  doi: 10.1002/prot.20308
– volume: 14
  start-page: 846
  year: 1998
  ident: 10.1002/prot.21702-BIB26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.10.846
– volume: 41
  start-page: 86
  year: 2000
  ident: 10.1002/prot.21702-BIB39
  publication-title: Proteins
  doi: 10.1002/1097-0134(20001001)41:1<86::AID-PROT110>3.0.CO;2-Y
– volume: 18
  start-page: 283
  year: 2000
  ident: 10.1002/prot.21702-BIB5
  publication-title: Nat Biotechnol
  doi: 10.1038/73723
– volume: 358
  start-page: 86
  year: 1992
  ident: 10.1002/prot.21702-BIB13
  publication-title: Nature
  doi: 10.1038/358086a0
– volume: 8
  start-page: 559
  year: 2001
  ident: 10.1002/prot.21702-BIB8
  publication-title: Nat Struct Biol
  doi: 10.1038/88640
– volume: 309
  start-page: 1868
  year: 2005
  ident: 10.1002/prot.21702-BIB18
  publication-title: Science
  doi: 10.1126/science.1113801
– volume: 57
  start-page: 702
  year: 2004
  ident: 10.1002/prot.21702-BIB46
  publication-title: Proteins
  doi: 10.1002/prot.20264
– volume: 34
  start-page: d291
  year: 2006
  ident: 10.1002/prot.21702-BIB7
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj059
– volume: 48
  start-page: 443
  year: 1970
  ident: 10.1002/prot.21702-BIB29
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
– volume: 61
  start-page: 193
  year: 2005
  ident: 10.1002/prot.21702-BIB41
  publication-title: Proteins
  doi: 10.1002/prot.20737
– volume: 61
  start-page: 91
  year: 2005
  ident: 10.1002/prot.21702-BIB23
  publication-title: Proteins
  doi: 10.1002/prot.20724
– volume: 9
  start-page: 197
  year: 2000
  ident: 10.1002/prot.21702-BIB2
  publication-title: Protein Sci
  doi: 10.1110/ps.9.1.197
– volume: 268
  start-page: 209
  year: 1997
  ident: 10.1002/prot.21702-BIB17
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.0959
– volume: 294
  start-page: 89
  year: 2001
  ident: 10.1002/prot.21702-BIB3
  publication-title: Science
  doi: 10.1126/science.1066011
– ident: 10.1002/prot.21702-BIB47
– volume: 5
  start-page: 17
  year: 2007
  ident: 10.1002/prot.21702-BIB21
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-5-17
– volume: 103
  start-page: 2605
  year: 2006
  ident: 10.1002/prot.21702-BIB34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0509379103
– volume: 7
  start-page: 1851
  year: 1998
  ident: 10.1002/prot.21702-BIB1
  publication-title: Protein Sci
  doi: 10.1002/pro.5560070901
– volume: 6
  start-page: 676
  year: 1997
  ident: 10.1002/prot.21702-BIB32
  publication-title: Protein Sci
  doi: 10.1002/pro.5560060317
– volume: 292
  start-page: 195
  year: 1999
  ident: 10.1002/prot.21702-BIB27
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3091
– volume: 28
  start-page: 235
  year: 2000
  ident: 10.1002/prot.21702-BIB6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 11
  start-page: 580
  year: 2006
  ident: 10.1002/prot.21702-BIB9
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2006.05.012
– volume: 85
  start-page: 1145
  year: 2003
  ident: 10.1002/prot.21702-BIB20
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(03)74551-2
– volume: 87
  start-page: 2647
  year: 2004
  ident: 10.1002/prot.21702-BIB22
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.045385
– volume: 33
  start-page: 2302
  year: 2005
  ident: 10.1002/prot.21702-BIB38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki524
– volume-title: Structure-based drug discovery
  year: 2006
  ident: 10.1002/prot.21702-BIB10
  doi: 10.1039/9781847552549
– volume: 19
  start-page: 874
  year: 2003
  ident: 10.1002/prot.21702-BIB44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg097
– volume: 25
  start-page: 3389
  year: 1997
  ident: 10.1002/prot.21702-BIB25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 57
  start-page: 2607
  year: 1986
  ident: 10.1002/prot.21702-BIB35
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.57.2607
SSID ssj0006936
Score 2.3338645
SourceID crossref
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms CASP
free modeling
I-TASSER
template refinement
threading
Title Template-based modeling and free modeling by I-TASSER in CASP7
URI https://api.istex.fr/ark:/67375/WNG-WKG5T35X-3/fulltext.pdf
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  issn: 0887-3585
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZsrG9jK1dWfeFYKOwB3e2FMvyyyDr2m6shNCkNHsyknyBsNQJWVbS_2F_9E6W7Lj7gA62F2OEsLHudPfT-e53hLwSwEKQPApAqzzo2jRXHZo0iLht9NJlochLEteTpN-X43E6aLW-V7Uwl7OkKOR6nS7-q6hxDIVtS2f_Qtz1Q3EA71HoeEWx4_VmgoeLxQwRZGAdVO5a3VSViJMlwGYEkefHYNQbDg9Py-K_3nCQNMHqwHI4-Hi045n95iLW1hmWSSE-9VNP556AddVInq9j0Z-Vd49VdCH5x9Yrdv149sFZ19BSv0Y-eunNr-vU4tVsKBvGNAplwy9HrsbzF5PvKGQtq8U-Hq9CtnFs1c_8n_xdnYWoll9sWlsSZ-f94-z803E84vE447dIhyVxKtuk8_706Oyk9uwiLVtO1p9W092yN5v3XwM4HbtX1w3EMnpA7vujBu05FXlIWlBske1eoVbziyu6R8vk3_Kvyha58666u3tQtQDcJm-v6xKtNIei0KnVpc2IvqKVLtFpQUtdekTOjg5HBx8C33AjMAxPtoGRXHCFkDZXhnPR1UqrNOdCx0meRzmoCOJUMwboFwBiDZoZNAIpomIlFGd8h7SLeQGPCZUWqYrIJLmcdCegEdgbHgFufuDAhdklr6tVyoxno7dNUWaZ49FmmV3RrFzRXfKynrtwHCy_nbVXLnY95U_ifXLTiU_JPRfJtwG3Z6SNGw2ek9vmcjX9unzhleMHaaqJrw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-based+modeling+and+free+modeling+by+I-TASSER+in+CASP7&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Zhang%2C+Yang&rft.date=2007&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=69&rft.issue=S8&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1002%2Fprot.21702&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WKG5T35X_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon