Lossless compression of hyperspectral images using hybrid context prediction
In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband...
Gespeichert in:
| Veröffentlicht in: | Optics express Jg. 20; H. 7; S. 8199 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
26.03.2012
|
| Schlagworte: | |
| ISSN: | 1094-4087, 1094-4087 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost. |
|---|---|
| AbstractList | In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost. In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost. |
| Author | Guo, Ke Liang, Yuan Li, Jianping |
| Author_xml | – sequence: 1 givenname: Yuan surname: Liang fullname: Liang, Yuan – sequence: 2 givenname: Jianping surname: Li fullname: Li, Jianping – sequence: 3 givenname: Ke surname: Guo fullname: Guo, Ke |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22453490$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLxDAQh4OsuA-9eZbevNh18ugjR1nWBxT2oueQppO10pdJC-5_b2RXkTnMwHy_gfmWZNb1HRJyTWFNeSrud9s1gzVATqU8IwsKUsQC8mz2b56TpfcfAFRkMrsgc8ZEwoWEBSmK3vsGvY9M3w4uDHXfRb2N3g8DOj-gGZ1uorrVe_TR5OtuH1alq6sQ6Eb8GqOQqmozhtwlObe68Xh16ivy9rh93TzHxe7pZfNQxIblyRhjlsoSDVSQCKulSThSrjGhYAVIXWpuKw2huOWgBWM0sWlKLVQlMpuXfEVuj3cH139O6EfV1t5g0-gO-8krmUjKpYQskDcncipbrNTgwifuoH4FBODuCBgXRDi0fwgF9eNX7baKgTr65d-MaG4K |
| Cites_doi | 10.1109/LSP.2005.862604 10.1109/LGRS.2005.859942 10.1109/LGRS.2007.890546 10.1117/12.478794 10.1109/LSP.2009.2016834 10.1109/83.855427 10.1016/S0165-1684(02)00305-5 10.1109/LSP.2004.840907 10.1117/12.690659 10.1109/LGRS.2003.822312 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1364/OE.20.008199 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 22453490 10_1364_OE_20_008199 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c285t-e769bec0d054fa9c53e13ae510f409aba3fda0a0a3f30a42215f661f0dbe2f8b3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302138800129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Thu Jul 10 23:40:34 EDT 2025 Mon Jul 21 05:13:51 EDT 2025 Sat Nov 29 04:39:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c285t-e769bec0d054fa9c53e13ae510f409aba3fda0a0a3f30a42215f661f0dbe2f8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1364/oe.20.008199 |
| PMID | 22453490 |
| PQID | 959139907 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_959139907 pubmed_primary_22453490 crossref_primary_10_1364_OE_20_008199 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-26 2012-Mar-26 20120326 |
| PublicationDateYYYYMMDD | 2012-03-26 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2012 |
| References | Aiazzi (oe-20-7-8199-R3) 2009; 16 Tang (oe-20-7-8199-R6) 2003; 1 Rizzo (oe-20-7-8199-R11) 2005; 12 Huang (oe-20-7-8199-R5) 2006; 6365 Aiazzi (oe-20-7-8199-R1) 2002; 82 Magli (oe-20-7-8199-R2) 2004; 1 Zhang (oe-20-7-8199-R8) 2007; 4 Mielikainen (oe-20-7-8199-R4) 2006; 13 Penna (oe-20-7-8199-R7) 2006; 3 Weinberger (oe-20-7-8199-R9) 2000; 9 Mielikainen (oe-20-7-8199-R10) 2002; 4725 |
| References_xml | – volume: 13 start-page: 157 year: 2006 ident: oe-20-7-8199-R4 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2005.862604 – volume: 3 start-page: 125 year: 2006 ident: oe-20-7-8199-R7 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.859942 – volume: 4 start-page: 283 year: 2007 ident: oe-20-7-8199-R8 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2007.890546 – volume: 4725 start-page: 600 year: 2002 ident: oe-20-7-8199-R10 publication-title: Proc. SPIE doi: 10.1117/12.478794 – volume: 16 start-page: 481 year: 2009 ident: oe-20-7-8199-R3 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2016834 – volume: 9 start-page: 1309 year: 2000 ident: oe-20-7-8199-R9 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.855427 – volume: 1 start-page: 1037 year: 2003 ident: oe-20-7-8199-R6 publication-title: Proc.SPIE/IS&T Electron, Imaging – volume: 82 start-page: 1619 year: 2002 ident: oe-20-7-8199-R1 publication-title: Signal Process. doi: 10.1016/S0165-1684(02)00305-5 – volume: 12 start-page: 138 year: 2005 ident: oe-20-7-8199-R11 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2004.840907 – volume: 6365 start-page: 63650L year: 2006 ident: oe-20-7-8199-R5 publication-title: Proc. SPIE doi: 10.1117/12.690659 – volume: 1 start-page: 21 year: 2004 ident: oe-20-7-8199-R2 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2003.822312 |
| SSID | ssj0014797 |
| Score | 2.1107786 |
| Snippet | In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 8199 |
| SubjectTerms | Algorithms Spectrum Analysis - methods |
| Title | Lossless compression of hyperspectral images using hybrid context prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22453490 https://www.proquest.com/docview/959139907 |
| Volume | 20 |
| WOSCitedRecordID | wos000302138800129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEB720UIvpdvHNn0EHbZHt7ZkR9KxlJRSsps9bCE9GdmWaGDXMZt4yV762zt62OuULrSHEjCxlcgwnz2akb75BHAiMlvOaURUsURHKVUqKooijnhVSp1SGk-Uk8yf8bMzsVjI87CH-9ptJ8DrWmy3svmvUOM1BNuWzv4D3H2neAG_I-h4RNjx-FfAz3DYu7T-y7LFPcvVh4SYcfrCSie0caWsukPrpgp-3Nq6LUdbR19tdQOqZdkjFkLXeeMUnfW26VkblsizDBPO39sBu8dRBL5iU9ONjJbi0658JdBwpsFSNlhEg061946YC2LCGUbI4D5pPHhM-MAXYqwh_-ik2SRFI86nmJ2_dyHJzs_Qms2Vwwaji4ylfjfR30Sxu6Z9OKQ8k9adnf6c9stHKZc8VDngzT4Mb2XVn8Ofd0ORe_ILF2dcPIHHIUEgHz2wR7Cn66fw0BF1y_UzmHXwkgG8ZGXIDrzEw0scvMTDSwK85A7e5_Dt8_Ti05co7IgRlVRkm0jzicSXLq4w0DZKlhnTCVMa_arBPF0ViplKxfhhhsUKX7UkMxiAmbgqNDWiYC_goF7V-iUQjaeKJiUXGU_LSghpqoRivxpPeCJH8K4zTt544ZPcrX5O0nw-zalVlbX2HAHpLJejZ7LLTarWq3ady8xKzsqYj-DYW7TvqEPg1b0tr-HR3SP4Bg42161-Cw_Km81yfT2Gfb4QYzd_MnbI_wItIGE6 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossless+compression+of+hyperspectral+images+using+hybrid+context+prediction&rft.jtitle=Optics+express&rft.au=Liang%2C+Yuan&rft.au=Li%2C+Jianping&rft.au=Guo%2C+Ke&rft.date=2012-03-26&rft.eissn=1094-4087&rft.volume=20&rft.issue=7&rft.spage=8199&rft_id=info:doi/10.1364%2FOE.20.008199&rft_id=info%3Apmid%2F22453490&rft.externalDocID=22453490 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |