Lossless compression of hyperspectral images using hybrid context prediction

In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express Jg. 20; H. 7; S. 8199
Hauptverfasser: Liang, Yuan, Li, Jianping, Guo, Ke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 26.03.2012
Schlagworte:
ISSN:1094-4087, 1094-4087
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.
AbstractList In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.
In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.
Author Guo, Ke
Liang, Yuan
Li, Jianping
Author_xml – sequence: 1
  givenname: Yuan
  surname: Liang
  fullname: Liang, Yuan
– sequence: 2
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
– sequence: 3
  givenname: Ke
  surname: Guo
  fullname: Guo, Ke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22453490$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLxDAQh4OsuA-9eZbevNh18ugjR1nWBxT2oueQppO10pdJC-5_b2RXkTnMwHy_gfmWZNb1HRJyTWFNeSrud9s1gzVATqU8IwsKUsQC8mz2b56TpfcfAFRkMrsgc8ZEwoWEBSmK3vsGvY9M3w4uDHXfRb2N3g8DOj-gGZ1uorrVe_TR5OtuH1alq6sQ6Eb8GqOQqmozhtwlObe68Xh16ivy9rh93TzHxe7pZfNQxIblyRhjlsoSDVSQCKulSThSrjGhYAVIXWpuKw2huOWgBWM0sWlKLVQlMpuXfEVuj3cH139O6EfV1t5g0-gO-8krmUjKpYQskDcncipbrNTgwifuoH4FBODuCBgXRDi0fwgF9eNX7baKgTr65d-MaG4K
Cites_doi 10.1109/LSP.2005.862604
10.1109/LGRS.2005.859942
10.1109/LGRS.2007.890546
10.1117/12.478794
10.1109/LSP.2009.2016834
10.1109/83.855427
10.1016/S0165-1684(02)00305-5
10.1109/LSP.2004.840907
10.1117/12.690659
10.1109/LGRS.2003.822312
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1364/OE.20.008199
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 22453490
10_1364_OE_20_008199
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c285t-e769bec0d054fa9c53e13ae510f409aba3fda0a0a3f30a42215f661f0dbe2f8b3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302138800129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Thu Jul 10 23:40:34 EDT 2025
Mon Jul 21 05:13:51 EDT 2025
Sat Nov 29 04:39:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-e769bec0d054fa9c53e13ae510f409aba3fda0a0a3f30a42215f661f0dbe2f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.20.008199
PMID 22453490
PQID 959139907
PQPubID 23479
ParticipantIDs proquest_miscellaneous_959139907
pubmed_primary_22453490
crossref_primary_10_1364_OE_20_008199
PublicationCentury 2000
PublicationDate 2012-03-26
2012-Mar-26
20120326
PublicationDateYYYYMMDD 2012-03-26
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2012
References Aiazzi (oe-20-7-8199-R3) 2009; 16
Tang (oe-20-7-8199-R6) 2003; 1
Rizzo (oe-20-7-8199-R11) 2005; 12
Huang (oe-20-7-8199-R5) 2006; 6365
Aiazzi (oe-20-7-8199-R1) 2002; 82
Magli (oe-20-7-8199-R2) 2004; 1
Zhang (oe-20-7-8199-R8) 2007; 4
Mielikainen (oe-20-7-8199-R4) 2006; 13
Penna (oe-20-7-8199-R7) 2006; 3
Weinberger (oe-20-7-8199-R9) 2000; 9
Mielikainen (oe-20-7-8199-R10) 2002; 4725
References_xml – volume: 13
  start-page: 157
  year: 2006
  ident: oe-20-7-8199-R4
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2005.862604
– volume: 3
  start-page: 125
  year: 2006
  ident: oe-20-7-8199-R7
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.859942
– volume: 4
  start-page: 283
  year: 2007
  ident: oe-20-7-8199-R8
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.890546
– volume: 4725
  start-page: 600
  year: 2002
  ident: oe-20-7-8199-R10
  publication-title: Proc. SPIE
  doi: 10.1117/12.478794
– volume: 16
  start-page: 481
  year: 2009
  ident: oe-20-7-8199-R3
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2016834
– volume: 9
  start-page: 1309
  year: 2000
  ident: oe-20-7-8199-R9
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.855427
– volume: 1
  start-page: 1037
  year: 2003
  ident: oe-20-7-8199-R6
  publication-title: Proc.SPIE/IS&T Electron, Imaging
– volume: 82
  start-page: 1619
  year: 2002
  ident: oe-20-7-8199-R1
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(02)00305-5
– volume: 12
  start-page: 138
  year: 2005
  ident: oe-20-7-8199-R11
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2004.840907
– volume: 6365
  start-page: 63650L
  year: 2006
  ident: oe-20-7-8199-R5
  publication-title: Proc. SPIE
  doi: 10.1117/12.690659
– volume: 1
  start-page: 21
  year: 2004
  ident: oe-20-7-8199-R2
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2003.822312
SSID ssj0014797
Score 2.1107786
Snippet In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 8199
SubjectTerms Algorithms
Spectrum Analysis - methods
Title Lossless compression of hyperspectral images using hybrid context prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/22453490
https://www.proquest.com/docview/959139907
Volume 20
WOSCitedRecordID wos000302138800129&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEB720UIvpdvHNn0EHbZHt7ZkR9KxlJRSsps9bCE9GdmWaGDXMZt4yV762zt62OuULrSHEjCxlcgwnz2akb75BHAiMlvOaURUsURHKVUqKooijnhVSp1SGk-Uk8yf8bMzsVjI87CH-9ptJ8DrWmy3svmvUOM1BNuWzv4D3H2neAG_I-h4RNjx-FfAz3DYu7T-y7LFPcvVh4SYcfrCSie0caWsukPrpgp-3Nq6LUdbR19tdQOqZdkjFkLXeeMUnfW26VkblsizDBPO39sBu8dRBL5iU9ONjJbi0658JdBwpsFSNlhEg061946YC2LCGUbI4D5pPHhM-MAXYqwh_-ik2SRFI86nmJ2_dyHJzs_Qms2Vwwaji4ylfjfR30Sxu6Z9OKQ8k9adnf6c9stHKZc8VDngzT4Mb2XVn8Ofd0ORe_ILF2dcPIHHIUEgHz2wR7Cn66fw0BF1y_UzmHXwkgG8ZGXIDrzEw0scvMTDSwK85A7e5_Dt8_Ti05co7IgRlVRkm0jzicSXLq4w0DZKlhnTCVMa_arBPF0ViplKxfhhhsUKX7UkMxiAmbgqNDWiYC_goF7V-iUQjaeKJiUXGU_LSghpqoRivxpPeCJH8K4zTt544ZPcrX5O0nw-zalVlbX2HAHpLJejZ7LLTarWq3ady8xKzsqYj-DYW7TvqEPg1b0tr-HR3SP4Bg42161-Cw_Km81yfT2Gfb4QYzd_MnbI_wItIGE6
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossless+compression+of+hyperspectral+images+using+hybrid+context+prediction&rft.jtitle=Optics+express&rft.au=Liang%2C+Yuan&rft.au=Li%2C+Jianping&rft.au=Guo%2C+Ke&rft.date=2012-03-26&rft.eissn=1094-4087&rft.volume=20&rft.issue=7&rft.spage=8199&rft_id=info:doi/10.1364%2FOE.20.008199&rft_id=info%3Apmid%2F22453490&rft.externalDocID=22453490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon