Finite difference method for solving boundary initial value problem of a system hyperbolic equations in a class of discontinuous functions

In this paper, a finite-difference method for solving boundary initial value problem of nonlinear system equations of hyperbolic type in a class of discontinuous functions is suggested. In order to obtain the numerical solution of the main problem in a class of discontinuous functions the auxiliary...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 149; no. 1; pp. 47 - 63
Main Authors: Rasulov, Mahir, Karaguler, Turhan, Sinsoysal, Bahaddin
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 05.02.2004
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a finite-difference method for solving boundary initial value problem of nonlinear system equations of hyperbolic type in a class of discontinuous functions is suggested. In order to obtain the numerical solution of the main problem in a class of discontinuous functions the auxiliary problem is introduced. The degree of smoothness of the solution of the auxiliary problem is higher than of smoothness of the solution of the main problem. Furthermore, the suggested auxiliary problem lets us write out effective and higher order numerical algorithms. The solutions obtained from these algorithms represent the physical nature of the problem with a high accuracy. Some numerical experiments are carried out by using the auxiliary problem.
AbstractList In this paper, a finite-difference method for solving boundary initial value problem of nonlinear system equations of hyperbolic type in a class of discontinuous functions is suggested. In order to obtain the numerical solution of the main problem in a class of discontinuous functions the auxiliary problem is introduced. The degree of smoothness of the solution of the auxiliary problem is higher than of smoothness of the solution of the main problem. Furthermore, the suggested auxiliary problem lets us write out effective and higher order numerical algorithms. The solutions obtained from these algorithms represent the physical nature of the problem with a high accuracy. Some numerical experiments are carried out by using the auxiliary problem.
Author Karaguler, Turhan
Sinsoysal, Bahaddin
Rasulov, Mahir
Author_xml – sequence: 1
  givenname: Mahir
  surname: Rasulov
  fullname: Rasulov, Mahir
  email: mresulov@beykent.edu.tr
  organization: Department of Mathematics and Computing, Beykent University, Buyukcekmece, Istanbul 34900, Turkey
– sequence: 2
  givenname: Turhan
  surname: Karaguler
  fullname: Karaguler, Turhan
  organization: Department of Mathematics and Computing, Beykent University, Buyukcekmece, Istanbul 34900, Turkey
– sequence: 3
  givenname: Bahaddin
  surname: Sinsoysal
  fullname: Sinsoysal, Bahaddin
  email: bahattin@risc01.ktu.edu.tr
  organization: Department of Mathematics, Karadeniz Technical University, Trabzon 61080, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15603211$$DView record in Pascal Francis
BookMark eNqFkM9qGzEQh0VxoLbTRyjoUkgO245Wu_LuqQQTpwFDD2nPQiuNapW15Eq7Br9CnjpaOzTHnOYP329gvgWZ-eCRkM8MvjJg4tsTQCsKDsBvoLzNQy0K8YHMWbPiRS2qdkbm_5GPZJHSXwBYCVbNyfPGeTcgNc5ajOg10j0Ou2CoDZGm0B-d_0O7MHqj4olOsFM9Pap-RHqIoetxT4OliqZTGnK_Ox0wdqF3muK_UQ0u-JRjGdC9SmlijUs6-MH5MYyJ2tHrM3VNrqzqE356rUvye3P_a_2j2P58eFzfbQtdNvVQYGkUNrZacda0zNZ1V65MBY01GhrODOSd4h1rjWGdaUVlDa-VtSWrmDAt8CX5crl7UEmr3kbltUvyEN0-vyhZLYCXjGWuvnA6hpQi2jcE5CRensXLyaqEUp7FS5Fz3y85zE8cHUaZtJvMGhdRD9IE986FFwegj6s
CODEN AMHCBQ
Cites_doi 10.1016/S0096-3003(98)10022-X
10.1002/cpa.3160070112
10.1002/cpa.3160100406
10.1002/cpa.3160020206
10.1016/S0096-3003(96)00082-3
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0096-3003(02)00956-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 63
ExternalDocumentID 15603211
10_1016_S0096_3003_02_00956_6
S0096300302009566
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c285t-e2dae8f4731891f55b27d408fdc0831d01f5a3b19dd1bd964fd35aff21416d903
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000188196000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:22 EDT 2025
Sat Nov 29 02:46:01 EST 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shock waves
Numerical modelling
Computational hydrodynamics
Hyperbolic system
Initial value problem
Nonlinear problems
Non linear system
Algorithm
Partial differential equation
Equation system
Discontinuous equation
Non linear equation
Numerical analysis
Boundary value problem
Algorithm performance
Applied mathematics
Numerical solution
Hyperbolic equation
Problem solving
Finite difference method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-e2dae8f4731891f55b27d408fdc0831d01f5a3b19dd1bd964fd35aff21416d903
PageCount 17
ParticipantIDs pascalfrancis_primary_15603211
crossref_primary_10_1016_S0096_3003_02_00956_6
elsevier_sciencedirect_doi_10_1016_S0096_3003_02_00956_6
PublicationCentury 2000
PublicationDate 2004-02-05
PublicationDateYYYYMMDD 2004-02-05
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-05
  day: 05
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2004
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Anderson, Tannehill, Pletcher (BIB2) 1984; vol. 1, 2
Lax (BIB14) 1957; X
Godunov (BIB10) 1979
Courant, Lax (BIB6) 1949; 2
Lax, Wendrof (BIB15) 1959
Whitham (BIB28) 1974
G.I. Barenblatt, V.M. Entov, V.M. Rijik, The Theory Nonstationary Filtration of Oil and Gas, 1972
Goritski, Krujkov, Chechkin (BIB12) 1997
Oran, Boris (BIB18) 1987
Lax (BIB13) 1954; VII
Ames (BIB1) 1965
Stoker (BIB27) 1957
Rozdestvenskii, Yanenko (BIB25) 1960
John (BIB9) 1986
M.A. Rasulov, Finite Difference Scheme for Solving of Some Nonlinear Problems of Mathematical Physics in a Class of Discontinuous Functions, Baku, 1996 (in Russian)
Oleinik (BIB17) 1957; 12
Rasulov (BIB19) 1991; 43
Entov, Zazovskii (BIB8) 1989
Godunov, Ryabenkii (BIB11) 1972
Rasulov, Erhan (BIB20) 1999; 102
Rasulov (BIB23) 1997; 85
Rasulov, Ragimova (BIB22) 1992; 28
Aziz, Settari (BIB3) 1979
Debnath (BIB7) 1997
Noh, Protter (BIB16) 1963; 12
Smoller (BIB26) 1983
Richmyer, Morton (BIB24) 1967
Courant, Friedrichs (BIB5) 1976
Goritski (10.1016/S0096-3003(02)00956-6_BIB12) 1997
Oran (10.1016/S0096-3003(02)00956-6_BIB18) 1987
Rasulov (10.1016/S0096-3003(02)00956-6_BIB23) 1997; 85
Rozdestvenskii (10.1016/S0096-3003(02)00956-6_BIB25) 1960
Rasulov (10.1016/S0096-3003(02)00956-6_BIB22) 1992; 28
10.1016/S0096-3003(02)00956-6_BIB4
Stoker (10.1016/S0096-3003(02)00956-6_BIB27) 1957
Aziz (10.1016/S0096-3003(02)00956-6_BIB3) 1979
Courant (10.1016/S0096-3003(02)00956-6_BIB6) 1949; 2
Debnath (10.1016/S0096-3003(02)00956-6_BIB7) 1997
Entov (10.1016/S0096-3003(02)00956-6_BIB8) 1989
Lax (10.1016/S0096-3003(02)00956-6_BIB14) 1957; X
Oleinik (10.1016/S0096-3003(02)00956-6_BIB17) 1957; 12
John (10.1016/S0096-3003(02)00956-6_BIB9) 1986
Courant (10.1016/S0096-3003(02)00956-6_BIB5) 1976
Noh (10.1016/S0096-3003(02)00956-6_BIB16) 1963; 12
Godunov (10.1016/S0096-3003(02)00956-6_BIB11) 1972
Smoller (10.1016/S0096-3003(02)00956-6_BIB26) 1983
Lax (10.1016/S0096-3003(02)00956-6_BIB13) 1954; VII
Anderson (10.1016/S0096-3003(02)00956-6_BIB2) 1984; vol. 1, 2
Lax (10.1016/S0096-3003(02)00956-6_BIB15) 1959
Rasulov (10.1016/S0096-3003(02)00956-6_BIB19) 1991; 43
10.1016/S0096-3003(02)00956-6_BIB21
Ames (10.1016/S0096-3003(02)00956-6_BIB1) 1965
Godunov (10.1016/S0096-3003(02)00956-6_BIB10) 1979
Rasulov (10.1016/S0096-3003(02)00956-6_BIB20) 1999; 102
Richmyer (10.1016/S0096-3003(02)00956-6_BIB24) 1967
Whitham (10.1016/S0096-3003(02)00956-6_BIB28) 1974
References_xml – volume: 12
  year: 1963
  ident: BIB16
  article-title: Difference methods and the equations of hydrodynamics
  publication-title: J. Math. Mech.
– volume: vol. 1, 2
  year: 1984
  ident: BIB2
  publication-title: Computational Fluid Mechanics and Heat Transfer
– year: 1959
  ident: BIB15
  article-title: Systems of Conservation Laws
– volume: 43
  year: 1991
  ident: BIB19
  article-title: On a method of solving the cauchy problem for a first order nonlinear equation of hyperbolic type with a smooth initial condition
  publication-title: Soviet Math. Dok.
– volume: 12
  year: 1957
  ident: BIB17
  article-title: Discontinuous solutions of nonlinear differential equations
  publication-title: Usp. Math. Nauk
– reference: G.I. Barenblatt, V.M. Entov, V.M. Rijik, The Theory Nonstationary Filtration of Oil and Gas, 1972
– year: 1960
  ident: BIB25
  article-title: Systems of Quasi-Linear Equations
– volume: 2
  start-page: 255
  year: 1949
  end-page: 273
  ident: BIB6
  article-title: On nonlinear partial differential equations with two independent variable
  publication-title: Commun. Pure Appl. Math.
– year: 1979
  ident: BIB3
  article-title: Petroleum Reservoir Simulation
– year: 1957
  ident: BIB27
  article-title: Water Waves
– year: 1979
  ident: BIB10
  article-title: Equations of Mathematical Physics
– year: 1987
  ident: BIB18
  article-title: Numerical Simulation of Reactive Flow
– year: 1997
  ident: BIB12
  article-title: First Order Kuazi Linear Equations with Partial Derivatives
– year: 1974
  ident: BIB28
  article-title: Linear and Nonlinear Waves
– year: 1989
  ident: BIB8
  article-title: Hydrodynamics of Process of Increase of Oil Efficiency
– year: 1983
  ident: BIB26
  article-title: Shock Wave and Reaction Diffusion Equations
– year: 1972
  ident: BIB11
  article-title: Finite Difference Chems
– year: 1976
  ident: BIB5
  article-title: Super Sonic Flow and Shock Waves
– volume: VII
  start-page: 159
  year: 1954
  end-page: 193
  ident: BIB13
  article-title: Weak solutions of nonlinear hyperbolic equations and their numerical computations
  publication-title: Commun. Pure Appl. Math.
– year: 1967
  ident: BIB24
  article-title: Difference Methods for Initial Value Problems
– year: 1986
  ident: BIB9
  article-title: Partial Differential Equations
– volume: 85
  start-page: 1
  year: 1997
  end-page: 16
  ident: BIB23
  article-title: On a method of calculation of the first phase saturation during the proceses of displacement of oil by water from porous media
  publication-title: Appl. Math. Comput.
– year: 1965
  ident: BIB1
  article-title: Nonlinear Partial Differential Equations in Engineering
– volume: 102
  start-page: 139
  year: 1999
  end-page: 154
  ident: BIB20
  article-title: An efficient numerical method for solving the Korteweg-de Vries equation in a class of discontinuous functions
  publication-title: Appl. Math. Comput.
– volume: X
  start-page: 537
  year: 1957
  end-page: 566
  ident: BIB14
  article-title: Hyperbolic systems of conservation laws II
  publication-title: Commun. Pure Appl. Math.
– reference: M.A. Rasulov, Finite Difference Scheme for Solving of Some Nonlinear Problems of Mathematical Physics in a Class of Discontinuous Functions, Baku, 1996 (in Russian)
– volume: 28
  start-page: 2056
  year: 1992
  end-page: 2063
  ident: BIB22
  article-title: A numerical method of the solution of one nonlinear equation of a hyperbolic type of the first-order
  publication-title: Diff. Eqs. Minsk
– year: 1997
  ident: BIB7
  article-title: Nonlinear Partial Differential Equations
– year: 1976
  ident: 10.1016/S0096-3003(02)00956-6_BIB5
– ident: 10.1016/S0096-3003(02)00956-6_BIB21
– volume: 12
  issue: 2
  year: 1963
  ident: 10.1016/S0096-3003(02)00956-6_BIB16
  article-title: Difference methods and the equations of hydrodynamics
  publication-title: J. Math. Mech.
– volume: 28
  start-page: 2056
  issue: 7
  year: 1992
  ident: 10.1016/S0096-3003(02)00956-6_BIB22
  article-title: A numerical method of the solution of one nonlinear equation of a hyperbolic type of the first-order
  publication-title: Diff. Eqs. Minsk
– year: 1986
  ident: 10.1016/S0096-3003(02)00956-6_BIB9
– volume: 43
  issue: 1
  year: 1991
  ident: 10.1016/S0096-3003(02)00956-6_BIB19
  article-title: On a method of solving the cauchy problem for a first order nonlinear equation of hyperbolic type with a smooth initial condition
  publication-title: Soviet Math. Dok.
– volume: 12
  year: 1957
  ident: 10.1016/S0096-3003(02)00956-6_BIB17
  article-title: Discontinuous solutions of nonlinear differential equations
  publication-title: Usp. Math. Nauk
– year: 1960
  ident: 10.1016/S0096-3003(02)00956-6_BIB25
– volume: 102
  start-page: 139
  year: 1999
  ident: 10.1016/S0096-3003(02)00956-6_BIB20
  article-title: An efficient numerical method for solving the Korteweg-de Vries equation in a class of discontinuous functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(98)10022-X
– year: 1979
  ident: 10.1016/S0096-3003(02)00956-6_BIB10
– volume: VII
  start-page: 159
  year: 1954
  ident: 10.1016/S0096-3003(02)00956-6_BIB13
  article-title: Weak solutions of nonlinear hyperbolic equations and their numerical computations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160070112
– year: 1965
  ident: 10.1016/S0096-3003(02)00956-6_BIB1
– year: 1997
  ident: 10.1016/S0096-3003(02)00956-6_BIB12
– year: 1967
  ident: 10.1016/S0096-3003(02)00956-6_BIB24
– volume: vol. 1, 2
  year: 1984
  ident: 10.1016/S0096-3003(02)00956-6_BIB2
– year: 1979
  ident: 10.1016/S0096-3003(02)00956-6_BIB3
– ident: 10.1016/S0096-3003(02)00956-6_BIB4
– year: 1987
  ident: 10.1016/S0096-3003(02)00956-6_BIB18
– year: 1974
  ident: 10.1016/S0096-3003(02)00956-6_BIB28
– volume: X
  start-page: 537
  year: 1957
  ident: 10.1016/S0096-3003(02)00956-6_BIB14
  article-title: Hyperbolic systems of conservation laws II
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160100406
– year: 1989
  ident: 10.1016/S0096-3003(02)00956-6_BIB8
– year: 1983
  ident: 10.1016/S0096-3003(02)00956-6_BIB26
– year: 1997
  ident: 10.1016/S0096-3003(02)00956-6_BIB7
– year: 1972
  ident: 10.1016/S0096-3003(02)00956-6_BIB11
– volume: 2
  start-page: 255
  issue: 3
  year: 1949
  ident: 10.1016/S0096-3003(02)00956-6_BIB6
  article-title: On nonlinear partial differential equations with two independent variable
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160020206
– year: 1957
  ident: 10.1016/S0096-3003(02)00956-6_BIB27
– volume: 85
  start-page: 1
  year: 1997
  ident: 10.1016/S0096-3003(02)00956-6_BIB23
  article-title: On a method of calculation of the first phase saturation during the proceses of displacement of oil by water from porous media
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(96)00082-3
– year: 1959
  ident: 10.1016/S0096-3003(02)00956-6_BIB15
SSID ssj0007614
Score 1.6921287
Snippet In this paper, a finite-difference method for solving boundary initial value problem of nonlinear system equations of hyperbolic type in a class of...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Publisher
StartPage 47
SubjectTerms Computational hydrodynamics
Exact sciences and technology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical modelling
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Shock waves
Title Finite difference method for solving boundary initial value problem of a system hyperbolic equations in a class of discontinuous functions
URI https://dx.doi.org/10.1016/S0096-3003(02)00956-6
Volume 149
WOSCitedRecordID wos000188196000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjQcQQly1MZj8wANoCrhuLvZjhTYYlA6tHSpPURzHaiVIu16m_QZ-FT-Nc2InXrho8MBLVFlOLPX7fHxycr5zCHkWa21iVrCAqzzHFmZxkOWRCHLYV2FYcC5MJRQeJMOhmEzkx07ne62FufiSlKW4vJSL_wo1jAHYKJ39B7ibh8IA_AbQ4Qqww_WvgD-aoRvZdD6BfWu7RFcJhbB0FUFQVTelJYr-ZmsMmmPRb9RMVe1lrGjSFnk-mMKb6lJh-eCD4nzjc89RVQmeN85Fae8cW05sMKEWj0ofBqwr3Dpv92tTJnZVS-oWm3Y6wCmY-sHJJ6skms6a7OH3_dP-m7OBTd0Yb5bKE3t0PBydfB71B_YTyhSzpMpWQCOscqAjH2VzLsFVqy0xP4_1WlbbVjpt0dPaYFvB053m1nr-ck7YkMWoeTJ481iJVrKqLuNvanP_dGY2mYwoRO9xFJdv8ySSYFe3-8eHk3eNN5DEtr58vZJXkb3yyz9n_IVb-k_-0e1FtoJda2y7lSs-0PguueNeXmjfku4e6RTlfXLrg4f0Aflm6Uc9_ailHwX6UUc_WtOPOvrRin7U0Y_ODc2opR_19KMN_eA2mFDRD-e26Ecb-j0kZ0eH49dvA9fvI8i5iNZBwXVWCBMmcM7IrokixRMdMmF0jv3wNIOxrKe6Uuuu0jIOje5FmTG8C28VWrLeI7JVzstih1CRFCaWKs4TJcIsYkpiG4csZCqXmVD5LnlZ_8vpwpZ1SX2-I8CSIiwp42kFSxrvElFjkTrf1PqcKVDqulv3W9j5BR13Hl83YY_c9BvlCdlaLzfFU3Ijv1jPVst9x7gfPZu7nA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+difference+method+for+solving+boundary+initial+value+problem+of+a+system+hyperbolic+equations+in+a+class+of+discontinuous+functions&rft.jtitle=Applied+mathematics+and+computation&rft.au=RASULOV%2C+Mahir&rft.au=KARAGULER%2C+Turban&rft.au=SINSOYSAL%2C+Bahaddin&rft.date=2004-02-05&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=149&rft.issue=1&rft.spage=47&rft.epage=63&rft_id=info:doi/10.1016%2FS0096-3003%2802%2900956-6&rft.externalDBID=n%2Fa&rft.externalDocID=15603211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon