G-continued fractions for basic hypergeometric functions II
In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 284; H. 2; S. 435 - 446 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Diego, CA
Elsevier Inc
15.08.2003
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a
G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a
G-continued fraction extension of the Rogers–Ramanujan continued fraction. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/S0022-247X(02)00521-8 |