G-continued fractions for basic hypergeometric functions II

In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 284; H. 2; S. 435 - 446
Hauptverfasser: Bowman, Douglas, Choi, Geumlan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Diego, CA Elsevier Inc 15.08.2003
Elsevier
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Ramanujan continued fraction.
ISSN:0022-247X
1096-0813
DOI:10.1016/S0022-247X(02)00521-8