G-continued fractions for basic hypergeometric functions II
In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 284; číslo 2; s. 435 - 446 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
15.08.2003
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a
G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a
G-continued fraction extension of the Rogers–Ramanujan continued fraction. |
|---|---|
| AbstractList | In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a
G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a
G-continued fraction extension of the Rogers–Ramanujan continued fraction. |
| Author | Bowman, Douglas Choi, Geumlan |
| Author_xml | – sequence: 1 givenname: Douglas surname: Bowman fullname: Bowman, Douglas email: bowman@math.uiuc.edu organization: Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA – sequence: 2 givenname: Geumlan surname: Choi fullname: Choi, Geumlan email: g-choi1@math.uiuc.edu organization: Mathematics Department, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15073458$$DView record in Pascal Francis |
| BookMark | eNqFkMFKAzEQhoNUsFYfQdiLoIfoJLvZzYIgUrQWCh5U8BbSZKKRNluSrdC38Vl8Mrdd0aOnYZjvH2a-QzIITUBCThhcMGDl5SMA55QX1csZ8HMAwRmVe2TIoC4pSJYPyPAXOSCHKb0DMCYqNiRXE2qa0PqwRpu5qE3rm5Ay18RsrpM32dtmhfEVmyW2sWvdOvTI1-d0ekT2nV4kPP6pI_J8d_s0vqezh8l0fDOjhkvRUotcylxoaaUFNEVZogOhBdO2drUocpg7Jiyra8ht1Y0rcKhtUdRcW2nKfERO-70rnYxedGcG45NaRb_UcaOYgCovhOw40XMmNilFdH8IqK0qtVOlth4UcLVTpba56z6H3RMfHqNKxmMwaH1E0yrb-H82fAMelHLt |
| CODEN | JMANAK |
| Cites_doi | 10.1090/S0002-9939-1995-1277090-8 10.1006/jmaa.1999.6674 10.1090/conm/166/01624 10.1016/0377-0427(89)90078-2 10.1007/BF02420027 |
| ContentType | Journal Article |
| Copyright | 2003 Elsevier Inc. 2004 INIST-CNRS |
| Copyright_xml | – notice: 2003 Elsevier Inc. – notice: 2004 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/S0022-247X(02)00521-8 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-0813 |
| EndPage | 446 |
| ExternalDocumentID | 15073458 10_1016_S0022_247X_02_00521_8 S0022247X02005218 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c285t-de28835a8d8d0ec466ef05a51ad9f95430bf15d19903d746670fead4492ad8c63 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184853300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Mon Jul 21 09:15:28 EDT 2025 Sat Nov 29 03:47:29 EST 2025 Fri Feb 23 02:23:19 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fully regular system Recurrence relation Rogers Ramanujan continued fraction Hypergeometric function Convergent series Infinite system Special function Regular system Continued fractions Equation system |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c285t-de28835a8d8d0ec466ef05a51ad9f95430bf15d19903d746670fead4492ad8c63 |
| OpenAccessLink | https://dx.doi.org/10.1016/S0022-247X(02)00521-8 |
| PageCount | 12 |
| ParticipantIDs | pascalfrancis_primary_15073458 crossref_primary_10_1016_S0022_247X_02_00521_8 elsevier_sciencedirect_doi_10_1016_S0022_247X_02_00521_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-08-15 |
| PublicationDateYYYYMMDD | 2003-08-15 |
| PublicationDate_xml | – month: 08 year: 2003 text: 2003-08-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | San Diego, CA |
| PublicationPlace_xml | – name: San Diego, CA |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2003 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Andrews, Bowman (BIB001) 1995; 123 Bowman, Choi (BIB004) 2000; 243 Thomae (BIB013) 1870; 4 Ramanujan (BIB012) 1962 D. Bowman, J. Sohn, Partial difference equations for basic hypergeometric functions and their Berndt (BIB003) 1991 Pincherle (BIB011) 1894; 32 Lorentzen, Waadeland (BIB010) 1992 continued fractions, J. Reine Angew. Math., under revision Kantorovich, Krylov (BIB006) 1958 Rogers (BIB009) 1894; 25 R.V.M. Zahar, Computational algorithms for linear difference equations, Thesis, Purdue University (1968) Bowman (BIB002) 1994; 166 Levrie, Piessens (BIB008) 1988 Levrie (BIB007) 1989; 25 Kantorovich (10.1016/S0022-247X(02)00521-8_BIB006) 1958 Thomae (10.1016/S0022-247X(02)00521-8_BIB013) 1870; 4 Bowman (10.1016/S0022-247X(02)00521-8_BIB002) 1994; 166 Pincherle (10.1016/S0022-247X(02)00521-8_BIB011) 1894; 32 Levrie (10.1016/S0022-247X(02)00521-8_BIB008) 1988 Bowman (10.1016/S0022-247X(02)00521-8_BIB004) 2000; 243 Rogers (10.1016/S0022-247X(02)00521-8_BIB009) 1894; 25 Andrews (10.1016/S0022-247X(02)00521-8_BIB001) 1995; 123 Ramanujan (10.1016/S0022-247X(02)00521-8_BIB012) 1962 Berndt (10.1016/S0022-247X(02)00521-8_BIB003) 1991 Levrie (10.1016/S0022-247X(02)00521-8_BIB007) 1989; 25 Lorentzen (10.1016/S0022-247X(02)00521-8_BIB010) 1992 10.1016/S0022-247X(02)00521-8_BIB005 10.1016/S0022-247X(02)00521-8_BIB014 |
| References_xml | – volume: 32 start-page: 209 year: 1894 end-page: 291 ident: BIB011 article-title: Delle funzioni ipergeometriche e di varie questioni ad esse attinenti publication-title: Giorn. Mat. Battaglini – volume: 25 start-page: 93 year: 1989 end-page: 104 ident: BIB007 article-title: Pringsheim's theorem revisited publication-title: J. Comput. Appl. Math. – reference: R.V.M. Zahar, Computational algorithms for linear difference equations, Thesis, Purdue University (1968) – volume: 25 start-page: 318 year: 1894 end-page: 343 ident: BIB009 article-title: Second expansion on the expansion of some infinite products publication-title: Proc. London Math. Soc. – year: 1991 ident: BIB003 publication-title: Ramanujan's Notebooks Part III – reference: D. Bowman, J. Sohn, Partial – reference: -continued fractions, J. Reine Angew. Math., under revision – volume: 4 start-page: 105 year: 1870 end-page: 138 ident: BIB013 article-title: Les séries Heinéennes supérieures, ou les éries de la forme publication-title: Ann. Mat. Pura Appl. – start-page: 349 year: 1988 end-page: 370 ident: BIB008 article-title: Convergence accelerations for Miller's algorithm publication-title: Nonlinear Numerical Methods and Rational Approximation – year: 1958 ident: BIB006 publication-title: Approximate Methods of Higher Analysis – year: 1992 ident: BIB010 publication-title: Continued Fractions with Applications – volume: 123 start-page: 3343 year: 1995 end-page: 3350 ident: BIB001 article-title: A full extension of the Rogers–Ramanujan continued fraction publication-title: Proc. Amer. Math. Soc. – volume: 166 start-page: 155 year: 1994 end-page: 165 ident: BIB002 article-title: Modified convergence for publication-title: Contemp. Math. – reference: -difference equations for basic hypergeometric functions and their – volume: 243 start-page: 338 year: 2000 end-page: 343 ident: BIB004 publication-title: J. Math. Anal. Appl. – year: 1962 ident: BIB012 publication-title: Collected Papers – start-page: 349 year: 1988 ident: 10.1016/S0022-247X(02)00521-8_BIB008 article-title: Convergence accelerations for Miller's algorithm – volume: 123 start-page: 3343 year: 1995 ident: 10.1016/S0022-247X(02)00521-8_BIB001 article-title: A full extension of the Rogers–Ramanujan continued fraction publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1995-1277090-8 – year: 1992 ident: 10.1016/S0022-247X(02)00521-8_BIB010 – volume: 243 start-page: 338 year: 2000 ident: 10.1016/S0022-247X(02)00521-8_BIB004 article-title: G-continued fractions for basic hypergeometric functions publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1999.6674 – year: 1962 ident: 10.1016/S0022-247X(02)00521-8_BIB012 – ident: 10.1016/S0022-247X(02)00521-8_BIB014 – volume: 32 start-page: 209 year: 1894 ident: 10.1016/S0022-247X(02)00521-8_BIB011 article-title: Delle funzioni ipergeometriche e di varie questioni ad esse attinenti publication-title: Giorn. Mat. Battaglini – volume: 166 start-page: 155 year: 1994 ident: 10.1016/S0022-247X(02)00521-8_BIB002 article-title: Modified convergence for q-continued fraction defined by functional relations publication-title: Contemp. Math. doi: 10.1090/conm/166/01624 – year: 1958 ident: 10.1016/S0022-247X(02)00521-8_BIB006 – volume: 25 start-page: 318 year: 1894 ident: 10.1016/S0022-247X(02)00521-8_BIB009 article-title: Second expansion on the expansion of some infinite products publication-title: Proc. London Math. Soc. – volume: 25 start-page: 93 year: 1989 ident: 10.1016/S0022-247X(02)00521-8_BIB007 article-title: Pringsheim's theorem revisited publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(89)90078-2 – ident: 10.1016/S0022-247X(02)00521-8_BIB005 – volume: 4 start-page: 105 year: 1870 ident: 10.1016/S0022-247X(02)00521-8_BIB013 article-title: Les séries Heinéennes supérieures, ou les éries de la forme 1+∑n=0∞xn1−qa1−q1−qa+11−q2⋯1−qa+n−11−qn1−qa′1−qb′1−qa′+11−qb′+1⋯1−qa′+n−11−qb′+n−1⋯1−qa(h)1−qb(h)1−qa(h)+11−qb(h)+1⋯1−qa(h)+n−11−qb(h)+n−1 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02420027 – year: 1991 ident: 10.1016/S0022-247X(02)00521-8_BIB003 |
| SSID | ssj0011571 |
| Score | 1.6758486 |
| Snippet | In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a
G-continued fraction expansion for the quotient of two contiguous basic... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 435 |
| SubjectTerms | Algebra Exact sciences and technology Functions of a complex variable Mathematical analysis Mathematics Number theory Sciences and techniques of general use Sequences, series, summability Special functions |
| Title | G-continued fractions for basic hypergeometric functions II |
| URI | https://dx.doi.org/10.1016/S0022-247X(02)00521-8 |
| Volume | 284 |
| WOSCitedRecordID | wos000184853300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0813 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011571 issn: 0022-247X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrg-KiFfcVZc-uKBI3TRtmgR8GZZVK7gIrjBvJU1aGdjpDNOZ3f05_hZ_mSeXpjPI4gV8KaVNGzjf15OT03NB6IWuVCo0YzGrZAobFNvmhaoYq0oRUZFacmWbTbDTUz6ZiM-j0aLPhbk4Z23Lr67E4r9CDdcAbJM6-xdwh5fCBTgH0OEIsMPxj4B_H5vw82m7BlOyWbq8hc5FZcrOVLSGnefyWz2fmV5a6rVZ2OyQw2NyOMZFcY25Ogv1XW11AV_KxJZ63fgHHnb380vvWvUW-hBGMJ86X_x6du6Z2TsdUuNFdWmXzhPWZ8NsBWvazACSsYlbW5xCxSbImbt8017jEtcVzlOLbOjPzNUu8Utx5ryTv2h553D4EuYDW9zUkRXGx53EfFjaQsChHWuGYltpKuE30C5hVIAe3B0XJ5OP4c9TQlnSV5g3DwxZX0fDhC8xeeUnu86eubOQHQDSuPYoGzbL2T1016MXjR1J7qNR3T5Atz8FJLuH6O0GXaJAlwjoElm6RNt0iQJdfnwvikfo67uTs-MPse-oESvC6SrWtWkuTSXXXONaZXleN5hKmkgtGkGzFFdNQnUCJkqqGdxmuAFVk2WCSM1Vnj5GO-28rZ-gSCicV5TXFWlwlspcMqJl2iQqIUznVO-hN71cyoUrnFIOEYUgyNIIssSktIIs-R7ivfRKb_05q64E2H_36MGWtIcJYbeTZpTv__u7n6JbwwfwDO2sluv6ObqpLlbTbnng2fMT7qeHOA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G-continued+fractions+for+basic+hypergeometric+functions%C2%A0II&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Bowman%2C+Douglas&rft.au=Choi%2C+Geumlan&rft.date=2003-08-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=284&rft.issue=2&rft.spage=435&rft.epage=446&rft_id=info:doi/10.1016%2FS0022-247X%2802%2900521-8&rft.externalDocID=S0022247X02005218 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |