G-continued fractions for basic hypergeometric functions II

In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 284; číslo 2; s. 435 - 446
Hlavní autoři: Bowman, Douglas, Choi, Geumlan
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 15.08.2003
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Ramanujan continued fraction.
AbstractList In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Ramanujan continued fraction.
Author Bowman, Douglas
Choi, Geumlan
Author_xml – sequence: 1
  givenname: Douglas
  surname: Bowman
  fullname: Bowman, Douglas
  email: bowman@math.uiuc.edu
  organization: Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA
– sequence: 2
  givenname: Geumlan
  surname: Choi
  fullname: Choi, Geumlan
  email: g-choi1@math.uiuc.edu
  organization: Mathematics Department, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15073458$$DView record in Pascal Francis
BookMark eNqFkMFKAzEQhoNUsFYfQdiLoIfoJLvZzYIgUrQWCh5U8BbSZKKRNluSrdC38Vl8Mrdd0aOnYZjvH2a-QzIITUBCThhcMGDl5SMA55QX1csZ8HMAwRmVe2TIoC4pSJYPyPAXOSCHKb0DMCYqNiRXE2qa0PqwRpu5qE3rm5Ay18RsrpM32dtmhfEVmyW2sWvdOvTI1-d0ekT2nV4kPP6pI_J8d_s0vqezh8l0fDOjhkvRUotcylxoaaUFNEVZogOhBdO2drUocpg7Jiyra8ht1Y0rcKhtUdRcW2nKfERO-70rnYxedGcG45NaRb_UcaOYgCovhOw40XMmNilFdH8IqK0qtVOlth4UcLVTpba56z6H3RMfHqNKxmMwaH1E0yrb-H82fAMelHLt
CODEN JMANAK
Cites_doi 10.1090/S0002-9939-1995-1277090-8
10.1006/jmaa.1999.6674
10.1090/conm/166/01624
10.1016/0377-0427(89)90078-2
10.1007/BF02420027
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0022-247X(02)00521-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 446
ExternalDocumentID 15073458
10_1016_S0022_247X_02_00521_8
S0022247X02005218
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c285t-de28835a8d8d0ec466ef05a51ad9f95430bf15d19903d746670fead4492ad8c63
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184853300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Mon Jul 21 09:15:28 EDT 2025
Sat Nov 29 03:47:29 EST 2025
Fri Feb 23 02:23:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fully regular system
Recurrence relation
Rogers Ramanujan continued fraction
Hypergeometric function
Convergent series
Infinite system
Special function
Regular system
Continued fractions
Equation system
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c285t-de28835a8d8d0ec466ef05a51ad9f95430bf15d19903d746670fead4492ad8c63
OpenAccessLink https://dx.doi.org/10.1016/S0022-247X(02)00521-8
PageCount 12
ParticipantIDs pascalfrancis_primary_15073458
crossref_primary_10_1016_S0022_247X_02_00521_8
elsevier_sciencedirect_doi_10_1016_S0022_247X_02_00521_8
PublicationCentury 2000
PublicationDate 2003-08-15
PublicationDateYYYYMMDD 2003-08-15
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-15
  day: 15
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2003
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Andrews, Bowman (BIB001) 1995; 123
Bowman, Choi (BIB004) 2000; 243
Thomae (BIB013) 1870; 4
Ramanujan (BIB012) 1962
D. Bowman, J. Sohn, Partial
difference equations for basic hypergeometric functions and their
Berndt (BIB003) 1991
Pincherle (BIB011) 1894; 32
Lorentzen, Waadeland (BIB010) 1992
continued fractions, J. Reine Angew. Math., under revision
Kantorovich, Krylov (BIB006) 1958
Rogers (BIB009) 1894; 25
R.V.M. Zahar, Computational algorithms for linear difference equations, Thesis, Purdue University (1968)
Bowman (BIB002) 1994; 166
Levrie, Piessens (BIB008) 1988
Levrie (BIB007) 1989; 25
Kantorovich (10.1016/S0022-247X(02)00521-8_BIB006) 1958
Thomae (10.1016/S0022-247X(02)00521-8_BIB013) 1870; 4
Bowman (10.1016/S0022-247X(02)00521-8_BIB002) 1994; 166
Pincherle (10.1016/S0022-247X(02)00521-8_BIB011) 1894; 32
Levrie (10.1016/S0022-247X(02)00521-8_BIB008) 1988
Bowman (10.1016/S0022-247X(02)00521-8_BIB004) 2000; 243
Rogers (10.1016/S0022-247X(02)00521-8_BIB009) 1894; 25
Andrews (10.1016/S0022-247X(02)00521-8_BIB001) 1995; 123
Ramanujan (10.1016/S0022-247X(02)00521-8_BIB012) 1962
Berndt (10.1016/S0022-247X(02)00521-8_BIB003) 1991
Levrie (10.1016/S0022-247X(02)00521-8_BIB007) 1989; 25
Lorentzen (10.1016/S0022-247X(02)00521-8_BIB010) 1992
10.1016/S0022-247X(02)00521-8_BIB005
10.1016/S0022-247X(02)00521-8_BIB014
References_xml – volume: 32
  start-page: 209
  year: 1894
  end-page: 291
  ident: BIB011
  article-title: Delle funzioni ipergeometriche e di varie questioni ad esse attinenti
  publication-title: Giorn. Mat. Battaglini
– volume: 25
  start-page: 93
  year: 1989
  end-page: 104
  ident: BIB007
  article-title: Pringsheim's theorem revisited
  publication-title: J. Comput. Appl. Math.
– reference: R.V.M. Zahar, Computational algorithms for linear difference equations, Thesis, Purdue University (1968)
– volume: 25
  start-page: 318
  year: 1894
  end-page: 343
  ident: BIB009
  article-title: Second expansion on the expansion of some infinite products
  publication-title: Proc. London Math. Soc.
– year: 1991
  ident: BIB003
  publication-title: Ramanujan's Notebooks Part III
– reference: D. Bowman, J. Sohn, Partial
– reference: -continued fractions, J. Reine Angew. Math., under revision
– volume: 4
  start-page: 105
  year: 1870
  end-page: 138
  ident: BIB013
  article-title: Les séries Heinéennes supérieures, ou les éries de la forme
  publication-title: Ann. Mat. Pura Appl.
– start-page: 349
  year: 1988
  end-page: 370
  ident: BIB008
  article-title: Convergence accelerations for Miller's algorithm
  publication-title: Nonlinear Numerical Methods and Rational Approximation
– year: 1958
  ident: BIB006
  publication-title: Approximate Methods of Higher Analysis
– year: 1992
  ident: BIB010
  publication-title: Continued Fractions with Applications
– volume: 123
  start-page: 3343
  year: 1995
  end-page: 3350
  ident: BIB001
  article-title: A full extension of the Rogers–Ramanujan continued fraction
  publication-title: Proc. Amer. Math. Soc.
– volume: 166
  start-page: 155
  year: 1994
  end-page: 165
  ident: BIB002
  article-title: Modified convergence for
  publication-title: Contemp. Math.
– reference: -difference equations for basic hypergeometric functions and their
– volume: 243
  start-page: 338
  year: 2000
  end-page: 343
  ident: BIB004
  publication-title: J. Math. Anal. Appl.
– year: 1962
  ident: BIB012
  publication-title: Collected Papers
– start-page: 349
  year: 1988
  ident: 10.1016/S0022-247X(02)00521-8_BIB008
  article-title: Convergence accelerations for Miller's algorithm
– volume: 123
  start-page: 3343
  year: 1995
  ident: 10.1016/S0022-247X(02)00521-8_BIB001
  article-title: A full extension of the Rogers–Ramanujan continued fraction
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1995-1277090-8
– year: 1992
  ident: 10.1016/S0022-247X(02)00521-8_BIB010
– volume: 243
  start-page: 338
  year: 2000
  ident: 10.1016/S0022-247X(02)00521-8_BIB004
  article-title: G-continued fractions for basic hypergeometric functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6674
– year: 1962
  ident: 10.1016/S0022-247X(02)00521-8_BIB012
– ident: 10.1016/S0022-247X(02)00521-8_BIB014
– volume: 32
  start-page: 209
  year: 1894
  ident: 10.1016/S0022-247X(02)00521-8_BIB011
  article-title: Delle funzioni ipergeometriche e di varie questioni ad esse attinenti
  publication-title: Giorn. Mat. Battaglini
– volume: 166
  start-page: 155
  year: 1994
  ident: 10.1016/S0022-247X(02)00521-8_BIB002
  article-title: Modified convergence for q-continued fraction defined by functional relations
  publication-title: Contemp. Math.
  doi: 10.1090/conm/166/01624
– year: 1958
  ident: 10.1016/S0022-247X(02)00521-8_BIB006
– volume: 25
  start-page: 318
  year: 1894
  ident: 10.1016/S0022-247X(02)00521-8_BIB009
  article-title: Second expansion on the expansion of some infinite products
  publication-title: Proc. London Math. Soc.
– volume: 25
  start-page: 93
  year: 1989
  ident: 10.1016/S0022-247X(02)00521-8_BIB007
  article-title: Pringsheim's theorem revisited
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(89)90078-2
– ident: 10.1016/S0022-247X(02)00521-8_BIB005
– volume: 4
  start-page: 105
  year: 1870
  ident: 10.1016/S0022-247X(02)00521-8_BIB013
  article-title: Les séries Heinéennes supérieures, ou les éries de la forme 1+∑n=0∞xn1−qa1−q1−qa+11−q2⋯1−qa+n−11−qn1−qa′1−qb′1−qa′+11−qb′+1⋯1−qa′+n−11−qb′+n−1⋯1−qa(h)1−qb(h)1−qa(h)+11−qb(h)+1⋯1−qa(h)+n−11−qb(h)+n−1
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02420027
– year: 1991
  ident: 10.1016/S0022-247X(02)00521-8_BIB003
SSID ssj0011571
Score 1.6758486
Snippet In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Publisher
StartPage 435
SubjectTerms Algebra
Exact sciences and technology
Functions of a complex variable
Mathematical analysis
Mathematics
Number theory
Sciences and techniques of general use
Sequences, series, summability
Special functions
Title G-continued fractions for basic hypergeometric functions II
URI https://dx.doi.org/10.1016/S0022-247X(02)00521-8
Volume 284
WOSCitedRecordID wos000184853300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrg-KiFfcVZc-uKBI3TRtmgR8GZZVK7gIrjBvJU1aGdjpDNOZ3f05_hZ_mSeXpjPI4gV8KaVNGzjf15OT03NB6IWuVCo0YzGrZAobFNvmhaoYq0oRUZFacmWbTbDTUz6ZiM-j0aLPhbk4Z23Lr67E4r9CDdcAbJM6-xdwh5fCBTgH0OEIsMPxj4B_H5vw82m7BlOyWbq8hc5FZcrOVLSGnefyWz2fmV5a6rVZ2OyQw2NyOMZFcY25Ogv1XW11AV_KxJZ63fgHHnb380vvWvUW-hBGMJ86X_x6du6Z2TsdUuNFdWmXzhPWZ8NsBWvazACSsYlbW5xCxSbImbt8017jEtcVzlOLbOjPzNUu8Utx5ryTv2h553D4EuYDW9zUkRXGx53EfFjaQsChHWuGYltpKuE30C5hVIAe3B0XJ5OP4c9TQlnSV5g3DwxZX0fDhC8xeeUnu86eubOQHQDSuPYoGzbL2T1016MXjR1J7qNR3T5Atz8FJLuH6O0GXaJAlwjoElm6RNt0iQJdfnwvikfo67uTs-MPse-oESvC6SrWtWkuTSXXXONaZXleN5hKmkgtGkGzFFdNQnUCJkqqGdxmuAFVk2WCSM1Vnj5GO-28rZ-gSCicV5TXFWlwlspcMqJl2iQqIUznVO-hN71cyoUrnFIOEYUgyNIIssSktIIs-R7ivfRKb_05q64E2H_36MGWtIcJYbeTZpTv__u7n6JbwwfwDO2sluv6ObqpLlbTbnng2fMT7qeHOA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G-continued+fractions+for+basic+hypergeometric+functions%C2%A0II&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Bowman%2C+Douglas&rft.au=Choi%2C+Geumlan&rft.date=2003-08-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=284&rft.issue=2&rft.spage=435&rft.epage=446&rft_id=info:doi/10.1016%2FS0022-247X%2802%2900521-8&rft.externalDocID=S0022247X02005218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon