G-continued fractions for basic hypergeometric functions II

In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 284; číslo 2; s. 435 - 446
Hlavní autoři: Bowman, Douglas, Choi, Geumlan
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 15.08.2003
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Ramanujan continued fraction.
ISSN:0022-247X
1096-0813
DOI:10.1016/S0022-247X(02)00521-8