G-continued fractions for basic hypergeometric functions II
In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a G-continued fraction extension of the Rogers–Rama...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 284; číslo 2; s. 435 - 446 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
15.08.2003
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we apply a modification of a generalized Pringsheim's theorem to obtain a
G-continued fraction expansion for the quotient of two contiguous basic hypergeometric functions in arbitrarily many variables. As an application we obtain a
G-continued fraction extension of the Rogers–Ramanujan continued fraction. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/S0022-247X(02)00521-8 |