On polynomial-time approximation algorithms for the variable length scheduling problem

This paper may be viewed as a corrigendum as well as an extension of the paper by (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582) where they deal with the variable length scheduling problem (VLSP) with parameters k 1, k 2, denoted VLSP( k 1, k 2). In the current paper, we first disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 302; H. 1; S. 489 - 495
Hauptverfasser: Czumaj, Artur, Ga̧sieniec, Leszek, Gaur, Daya Ram, Krishnamurti, Ramesh, Rytter, Wojciech, Zito, Michele
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 13.06.2003
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper may be viewed as a corrigendum as well as an extension of the paper by (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582) where they deal with the variable length scheduling problem (VLSP) with parameters k 1, k 2, denoted VLSP( k 1, k 2). In the current paper, we first discuss an error in the analysis of one of the approximation algorithms described in (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582), where an approximation algorithm for VLSP( k 1, k 2), k 1< k 2, was presented and it was claimed that the algorithm achieves the approximation ratio of 1+( k 1( k 2− k 1))/ k 2. In this paper we give a problem instance for which the same algorithm obtains the approximation ratio ≈ k 2 k 1 . We then present two simple approximation algorithms, one for the case k 1 = 1 with an approximation ratio of 2, and one for the case k 1>1 with an approximation ratio of 2+( k 2/2 k 1). This corrects the result claimed in (Czumaj et al., Theoret. Comput. Sci. 262 (1–2), (2001) 569–582).
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(03)00141-5