A sequential design for estimating a nonlinear parametric function

A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the nex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 138; číslo 1; s. 113 - 120
Hlavní autoři: Rekab, Kamel, Tahir, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.06.2003
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the next observation is to be taken at x=−1 or 1. It is shown that, under this design, the mean number of observations taken at x=1, m k , converges with probability one to an optimal value as k→∞, where k denotes the total number of design points. The simulation study indicates that m k converges in L 2 to the optimal value with the order of O( k −2).
ISSN:0096-3003
1873-5649
DOI:10.1016/S0096-3003(02)00113-3