A sequential design for estimating a nonlinear parametric function
A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at x=±1 and specifies whether the nex...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 138; číslo 1; s. 113 - 120 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.06.2003
Elsevier |
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A fully-sequential design for estimating a nonlinear function of the parameters in the simple linear regression model is proposed and its asymptotic behavior is investigated both theoretically and by simulation. The design requires that the observations be taken at
x=±1 and specifies whether the next observation is to be taken at
x=−1 or 1. It is shown that, under this design, the mean number of observations taken at
x=1,
m
k
, converges with probability one to an optimal value as
k→∞, where
k denotes the total number of design points. The simulation study indicates that
m
k
converges in
L
2 to the optimal value with the order of O(
k
−2). |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/S0096-3003(02)00113-3 |