Operator Equations of the Second Kind: Theorems on the Existence and Uniqueness of the Solution and on the Preservation of Solvability

This paper continues the author’s research on the problem of preserving the solvability of controlled operator equations. As a preliminary result (which is of independent interest) for a general operator acting on an arbitrary Banach space , new theorems on the existence and uniqueness of a fixed po...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Differential equations Ročník 58; číslo 5; s. 649 - 661
Hlavný autor: Chernov, A. V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.05.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0012-2661, 1608-3083
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper continues the author’s research on the problem of preserving the solvability of controlled operator equations. As a preliminary result (which is of independent interest) for a general operator acting on an arbitrary Banach space , new theorems on the existence and uniqueness of a fixed point are obtained. Here the well-known concept of the cone norm is used: , where is, generally speaking, another Banach space semi-ordered by the cone . These theorems are based on the assumption that the operator analog of the local Lipschitz condition with respect to the cone norm is satisfied and generalize the result by A.V. Kalinin and S.F. Morozov ( , ). The role of an analog of the Lipschitz constant on a given bounded set is played by a bounded linear operator , depending on this set, with spectral radius . In addition, M.A. Krasnosel’skii’s lemmas on the equivalent norm are used. Based on the statements obtained, we prove theorems on local and total (over the set of admissible controls) preservation of the solvability of the controlled operator equation , , where is the control parameter from, generally speaking, an arbitrary set . The abstract theory is illustrated by examples of a controlled nonlinear operator differential equation in a Banach space as well as a strongly nonlinear pseudoparabolic equation.
AbstractList This paper continues the author’s research on the problem of preserving the solvability of controlled operator equations. As a preliminary result (which is of independent interest) for a general operator acting on an arbitrary Banach space , new theorems on the existence and uniqueness of a fixed point are obtained. Here the well-known concept of the cone norm is used: , where is, generally speaking, another Banach space semi-ordered by the cone . These theorems are based on the assumption that the operator analog of the local Lipschitz condition with respect to the cone norm is satisfied and generalize the result by A.V. Kalinin and S.F. Morozov ( , ). The role of an analog of the Lipschitz constant on a given bounded set is played by a bounded linear operator , depending on this set, with spectral radius . In addition, M.A. Krasnosel’skii’s lemmas on the equivalent norm are used. Based on the statements obtained, we prove theorems on local and total (over the set of admissible controls) preservation of the solvability of the controlled operator equation , , where is the control parameter from, generally speaking, an arbitrary set . The abstract theory is illustrated by examples of a controlled nonlinear operator differential equation in a Banach space as well as a strongly nonlinear pseudoparabolic equation.
This paper continues the author's research on the problem of preserving the solvability ofcontrolled operator equations. As a preliminary result (which is of independent interest) for ageneral operator [Formula omitted] acting on an arbitrary Banach space [Formula omitted], new theorems on the existence and uniqueness of afixed point are obtained. Here the well-known concept of the cone norm is used: [Formula omitted],where [Formula omitted] is, generally speaking, another Banach spacesemi-ordered by the cone [Formula omitted].These theorems are based on the assumption that the operator analog of the local Lipschitzcondition with respect to the cone norm [Formula omitted] is satisfied andgeneralize the result by A.V. Kalinin and S.F. Morozov ( [Formula omitted], [Formula omitted]).The role of an analog of the Lipschitz constant on a given bounded set [Formula omitted] is played by a bounded linear operator [Formula omitted], depending on this set,with spectral radius [Formula omitted]. Inaddition, M.A. Krasnosel'skii's lemmas on the equivalent norm are used. Based on the statementsobtained, we prove theorems on local and total (over the set of admissible controls) preservation ofthe solvability of the controlled operator equation [Formula omitted], [Formula omitted], where [Formula omitted] is the control parameter from, generally speaking,an arbitrary set [Formula omitted]. The abstract theory is illustrated by examples of acontrolled nonlinear operator differential equation in a Banach space as well as a stronglynonlinear pseudoparabolic equation.
This paper continues the author’s research on the problem of preserving the solvability of controlled operator equations. As a preliminary result (which is of independent interest) for a general operator acting on an arbitrary Banach space , new theorems on the existence and uniqueness of a fixed point are obtained. Here the well-known concept of the cone norm is used: , where is, generally speaking, another Banach space semi-ordered by the cone . These theorems are based on the assumption that the operator analog of the local Lipschitz condition with respect to the cone norm is satisfied and generalize the result by A.V. Kalinin and S.F. Morozov (, ). The role of an analog of the Lipschitz constant on a given bounded set is played by a bounded linear operator , depending on this set, with spectral radius . In addition, M.A. Krasnosel’skii’s lemmas on the equivalent norm are used. Based on the statements obtained, we prove theorems on local and total (over the set of admissible controls) preservation of the solvability of the controlled operator equation , , where is the control parameter from, generally speaking, an arbitrary set . The abstract theory is illustrated by examples of a controlled nonlinear operator differential equation in a Banach space as well as a strongly nonlinear pseudoparabolic equation.
Audience Academic
Author Chernov, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Chernov
  fullname: Chernov, A. V.
  email: chavnn@mail.ru
  organization: Lobachevsky State University of Nizhny Novgorod, Alekseev Nizhny Novgorod State Technical University
BookMark eNp9kdtqGzEQhkVJoM7hAXK30OtNR5KllXsXgnuggQTiXC-SdtZWWEuOJIfmBfLc0dqGQEuDQIL5_29GM3NCjnzwSMgFhUtK-fTrPQBlTMpygQAQ8hOZUAmq5qD4EZmMcj3qn8lJSo8AMGuomJDX2w1GnUOs5k9bnV3wqQp9lVdY3aMNvqt-O999qxYrDBHXRfQ7cf7HpYzeYqWL58G7py16TO9wGLZjtp18YO4iJozPuyqjr3ietXGDyy9n5LjXQ8Lzw3tKHr7PF9c_65vbH7-ur25qy5TItWJopp3qtTWcNwK1MXRmpxQ0a6Zd1_C-k1QKZjgDKGFhwDasNwhGKSUMPyVf9nk3MZQfp9w-hm30pWTLGlBMgZrNiuty71rqAVvn-5CjtuV0uHZlKNi7Er8qA5RcCCkL0OwBG0NKEfvWurzrs4BuaCm045baf7ZUSPoXuYlurePLhwzbM6l4_RLjexP_h94A-POlEQ
CitedBy_id crossref_primary_10_1134_S0965542524700362
crossref_primary_10_1134_S1064562423600690
crossref_primary_10_1134_S0965542523070035
Cites_doi 10.20537/vm150207
10.1002/mana.19750672207
10.1007/BF02355077
10.1007/s10625-005-0206-2
10.1007/BF01109723
10.1134/S0965542518120096
10.35634/vm200107
10.3103/S1066369X1706010X
10.1016/0041-5553(90)90002-A
10.1016/j.ifacol.2018.11.454
10.1007/BF01445103
10.3103/S1066369X18110063
10.1016/0362-546X(94)00190-S
10.1134/S096554251312004X
10.1016/j.jde.2017.09.045
10.1090/gsm/112/07
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022
COPYRIGHT 2022 Springer
Pleiades Publishing, Ltd. 2022.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022
– notice: COPYRIGHT 2022 Springer
– notice: Pleiades Publishing, Ltd. 2022.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1134/S0012266122050056
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1608-3083
EndPage 661
ExternalDocumentID A715635566
10_1134_S0012266122050056
GroupedDBID --Z
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
04Q
04W
06D
0R~
0VY
1N0
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M0N
M2O
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OHT
OVD
P2P
P62
P9R
PADUT
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XU3
YLTOR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
M2P
PHGZM
PHGZT
PQGLB
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c285t-82eb4d8facb3375eabb19c410a274dd73fd61652b32004105b0c72fbe0b8885b3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000847695400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-2661
IngestDate Wed Sep 17 23:55:16 EDT 2025
Sat Nov 29 10:10:34 EST 2025
Sat Nov 29 01:43:31 EST 2025
Tue Nov 18 22:26:18 EST 2025
Fri Feb 21 02:45:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-82eb4d8facb3375eabb19c410a274dd73fd61652b32004105b0c72fbe0b8885b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2708280899
PQPubID 54032
PageCount 13
ParticipantIDs proquest_journals_2708280899
gale_infotracacademiconefile_A715635566
crossref_citationtrail_10_1134_S0012266122050056
crossref_primary_10_1134_S0012266122050056
springer_journals_10_1134_S0012266122050056
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Differential equations
PublicationTitleAbbrev Diff Equat
PublicationYear 2022
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References KorpusovM.O.SveshnikovA.G.Blow-up of solutions of strongly nonlinear equations of pseudoparabolic typeSovrem. Mat. Pril.2006403138
Chernov, A.V., On overcoming the singularity of distributed control systems, Tr. Tret’ei Vseross. nauchn. konf. “Matematicheskoe modelirovanie i kraevye zadachi” (Proc. Third All-Russ. Sci. Conf. “Mathematical Modeling and Boundary Value Problems”), Samara, 2006, Part 2, pp. 171–174.
TersenovA.The Dirichlet problem for second order semilinear elliptic and parabolic equationsDiffer. Equat. Appl.20091339341125549751177.35100
ChernovA.V.Preservation of the solvability of a semilinear global electric circuit equationComput. Math. Math. Phys.2018581220182030390893810.1134/S0965542518120096
ChernovA.V.On the totally global solvability of a controlled Hammerstein type equation with a varied linear operatorVestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki201525223024310.20537/vm150207
SuminV.I.Controlled Volterra functional equations and contraction mapping principleTr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk201925. N 12622783935655
SuminV.I.Conditions of stability for the existence of global solutions of controlled boundary value problems for nonlinear parabolic equationsVestn. Tambov. Gos. Univ. Ser. Estestv. Tekh. Nauki200054493495
Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz, Moscow: Nauka, 1984. Translated under the title: Functional Analysis, Oxford: Pergamon, 1982.
Sumin, V.I., Funktsional’nye vol’terrovy uravneniya v teorii optimal’nogo upravleniya raspredelennymi sistemami. Ch. I (Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems. Part I), Nizhny Novgorod: Izd. Nizhegorod. Gos. Univ., 1992.
SaitoH.Global solvability of the Navier–Stokes equations with a free surface in the maximal regularity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}—\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q $$\end{document} classJ. Differ. Equat.201826431475152010.1016/j.jde.2017.09.045
SuminV.I.Volterra functional-operator equations in the theory of optimal control of distributed systemsIFAC PapersOnLine2018513275976410.1016/j.ifacol.2018.11.454
Sumin, V.I. and Chernov, A.V., Volterra functional-operator equations in the theory of optimization of distributed systems, Tr. Mezhdunar. konf. “Dinamika sistem i protsessy upravleniya,” posvyashch. 90-letiyu so dnya rozhd. akad. N.N. Krasovskogo (Proc. Int. Conf. “Dynamics of Systems and Control Processes” Dedicated 90th Anniv. Acad. N.N. Krasovskii), (Yekaterinburg, September 15–20, 2014), Yekaterinburg, 2015, pp. 293–300.
Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii, Ya.B., and Stetsenko, V.Ya., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
Sumin, V.I., On the problem of singularity of distributed control systems. II, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 2001, no. 1 (23), pp. 198–204.
ChernovA.V.On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operatorRuss. Math.2017616728110.3103/S1066369X1706010X
KorpusovM.O.Global solvability conditions for an initial–boundary value problem for a nonlinear equation of pseudoparabolic typeDiffer. Equations2005415712720220068010.1007/s10625-005-0206-2
KalantarovV.K.LadyzhenskayaO.A.The occurrence of collapse for quasilinear equations of parabolic and hyperbolic typesJ. Math. Sci.1978101537010.1007/BF01109723
SuminV.I.The features of gradient methods for distributed optimal-control problemsUSSR Comput. Math. Math. Phys.199030111510.1016/0041-5553(90)90002-A
Sumin, V.I., On the problem of singularity of distributed control systems. I, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 1999, no. 2 (21), pp. 145–155.
Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math., Providence, 2010, vol. 112.
Sumin, V.I., Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Doctoral (Phys.-Math.) Dissertation, Nizhny Novgorod, 1998.
Gaewski, H., Gröger, K, and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974.
SuminV.I.ChernovA.V.Operators in spaces of measurable functions: Volterra and quasi-nilpotencyDiffer. Equations199834101403141117130110958.47014
Chernov, A.V., Volterra operator equations and their application in the theory of optimization of hyperbolic systems, Cand. Sci. (Phys.-Math.) Dissertation, Nizhny Novgorod, 2000.
ChernovA.V.Smooth finite-dimensional approximations of distributed optimization problems via control discretizationComput. Math. Math. Phys.2013531218391852314657110.1134/S096554251312004X
KalininA.V.MorozovS.F.The Cauchy problem for a nonlinear integro-differential transport equationMath. Notes1997615566573162011310.1007/BF02355077
Krasnosel’skii, M.A., Polozhitel’nye resheniya operatornykh uravnenii. Glavy nelineinogo analiza (Positive Solutions of Operator Equations. Chapters of Nonlinear Analysis), Moscow: Fizmatgiz, 1962.
KobayashiT.PecherH.ShibataY.On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosityMath. Ann.19932962215234121990010.1007/BF01445103
LionsJ.-L.Controle de systèmes distribués singuliers1983ParisGauthier-Villars0514.93001
Sumin, V.I., On the problem of singularity of distributed control systems. III, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 2002, no. 1 (25), pp. 164–174.
Sumin, V.I., The problem of stability of the existence of global solutions of controlled boundary value problems and Volterra functional equations, Vestn. Nizhegorod. Gos. Univ. Mat., 2003, no. 1, pp. 91–107.
ChernovA.V.On totally global solvability of controlled second kind operator equationVestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki202030192111411950210.35634/vm200107
ChernovA.V.The total preservation of unique global solvability of the first kind operator equation with additional controlled nonlinearityRuss. Math.20186211536610.3103/S1066369X18110063
LuG.Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problemNonlinear Anal. Theory Methods Appl.199524811931206132564210.1016/0362-546X(94)00190-S
FursikovA.V.Optimal Control of Distributed Systems. Theory and Applications2000Providence, R.I.Am. Math. Soc.1027.93500
2370_CR7
2370_CR25
2370_CR9
A.V. Chernov (2370_CR22) 2017; 61
2370_CR8
A.V. Chernov (2370_CR23) 2020; 30
2370_CR27
V.I. Sumin (2370_CR21) 2019; 25. N 1
A.V. Kalinin (2370_CR2) 1997; 61
H. Saito (2370_CR31) 2018; 264
A. Tersenov (2370_CR30) 2009; 1
A.V. Chernov (2370_CR20) 2018; 58
A.V. Chernov (2370_CR32) 2018; 62
A.V. Fursikov (2370_CR6) 2000
2370_CR10
V.I. Sumin (2370_CR11) 2000; 5
2370_CR13
2370_CR12
2370_CR34
2370_CR33
G. Lu (2370_CR29) 1995; 24
2370_CR17
V.I. Sumin (2370_CR19) 2018; 51
2370_CR16
A.V. Chernov (2370_CR18) 2015; 25
M.O. Korpusov (2370_CR26) 2006; 40
V.K. Kalantarov (2370_CR24) 1978; 10
T. Kobayashi (2370_CR28) 1993; 296
M.O. Korpusov (2370_CR4) 2005; 41
V.I. Sumin (2370_CR14) 1990; 30
V.I. Sumin (2370_CR35) 1998; 34
2370_CR3
2370_CR1
J.-L. Lions (2370_CR5) 1983
A.V. Chernov (2370_CR15) 2013; 53
References_xml – reference: Sumin, V.I., Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Doctoral (Phys.-Math.) Dissertation, Nizhny Novgorod, 1998.
– reference: ChernovA.V.On totally global solvability of controlled second kind operator equationVestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki202030192111411950210.35634/vm200107
– reference: Sumin, V.I., On the problem of singularity of distributed control systems. II, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 2001, no. 1 (23), pp. 198–204.
– reference: KorpusovM.O.SveshnikovA.G.Blow-up of solutions of strongly nonlinear equations of pseudoparabolic typeSovrem. Mat. Pril.2006403138
– reference: KorpusovM.O.Global solvability conditions for an initial–boundary value problem for a nonlinear equation of pseudoparabolic typeDiffer. Equations2005415712720220068010.1007/s10625-005-0206-2
– reference: Sumin, V.I., The problem of stability of the existence of global solutions of controlled boundary value problems and Volterra functional equations, Vestn. Nizhegorod. Gos. Univ. Mat., 2003, no. 1, pp. 91–107.
– reference: Sumin, V.I. and Chernov, A.V., Volterra functional-operator equations in the theory of optimization of distributed systems, Tr. Mezhdunar. konf. “Dinamika sistem i protsessy upravleniya,” posvyashch. 90-letiyu so dnya rozhd. akad. N.N. Krasovskogo (Proc. Int. Conf. “Dynamics of Systems and Control Processes” Dedicated 90th Anniv. Acad. N.N. Krasovskii), (Yekaterinburg, September 15–20, 2014), Yekaterinburg, 2015, pp. 293–300.
– reference: Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math., Providence, 2010, vol. 112.
– reference: Gaewski, H., Gröger, K, and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974.
– reference: Krasnosel’skii, M.A., Polozhitel’nye resheniya operatornykh uravnenii. Glavy nelineinogo analiza (Positive Solutions of Operator Equations. Chapters of Nonlinear Analysis), Moscow: Fizmatgiz, 1962.
– reference: Sumin, V.I., On the problem of singularity of distributed control systems. III, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 2002, no. 1 (25), pp. 164–174.
– reference: Chernov, A.V., Volterra operator equations and their application in the theory of optimization of hyperbolic systems, Cand. Sci. (Phys.-Math.) Dissertation, Nizhny Novgorod, 2000.
– reference: Chernov, A.V., On overcoming the singularity of distributed control systems, Tr. Tret’ei Vseross. nauchn. konf. “Matematicheskoe modelirovanie i kraevye zadachi” (Proc. Third All-Russ. Sci. Conf. “Mathematical Modeling and Boundary Value Problems”), Samara, 2006, Part 2, pp. 171–174.
– reference: Sumin, V.I., Funktsional’nye vol’terrovy uravneniya v teorii optimal’nogo upravleniya raspredelennymi sistemami. Ch. I (Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems. Part I), Nizhny Novgorod: Izd. Nizhegorod. Gos. Univ., 1992.
– reference: Sumin, V.I., On the problem of singularity of distributed control systems. I, Vestn. Nizhegorod. Gos. Univ. Mat. Model. Optim. Upr., 1999, no. 2 (21), pp. 145–155.
– reference: KobayashiT.PecherH.ShibataY.On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosityMath. Ann.19932962215234121990010.1007/BF01445103
– reference: LuG.Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problemNonlinear Anal. Theory Methods Appl.199524811931206132564210.1016/0362-546X(94)00190-S
– reference: ChernovA.V.Preservation of the solvability of a semilinear global electric circuit equationComput. Math. Math. Phys.2018581220182030390893810.1134/S0965542518120096
– reference: SuminV.I.Volterra functional-operator equations in the theory of optimal control of distributed systemsIFAC PapersOnLine2018513275976410.1016/j.ifacol.2018.11.454
– reference: ChernovA.V.Smooth finite-dimensional approximations of distributed optimization problems via control discretizationComput. Math. Math. Phys.2013531218391852314657110.1134/S096554251312004X
– reference: Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii, Ya.B., and Stetsenko, V.Ya., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
– reference: LionsJ.-L.Controle de systèmes distribués singuliers1983ParisGauthier-Villars0514.93001
– reference: SaitoH.Global solvability of the Navier–Stokes equations with a free surface in the maximal regularity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}—\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q $$\end{document} classJ. Differ. Equat.201826431475152010.1016/j.jde.2017.09.045
– reference: ChernovA.V.On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operatorRuss. Math.2017616728110.3103/S1066369X1706010X
– reference: KalantarovV.K.LadyzhenskayaO.A.The occurrence of collapse for quasilinear equations of parabolic and hyperbolic typesJ. Math. Sci.1978101537010.1007/BF01109723
– reference: FursikovA.V.Optimal Control of Distributed Systems. Theory and Applications2000Providence, R.I.Am. Math. Soc.1027.93500
– reference: ChernovA.V.On the totally global solvability of a controlled Hammerstein type equation with a varied linear operatorVestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki201525223024310.20537/vm150207
– reference: KalininA.V.MorozovS.F.The Cauchy problem for a nonlinear integro-differential transport equationMath. Notes1997615566573162011310.1007/BF02355077
– reference: ChernovA.V.The total preservation of unique global solvability of the first kind operator equation with additional controlled nonlinearityRuss. Math.20186211536610.3103/S1066369X18110063
– reference: SuminV.I.ChernovA.V.Operators in spaces of measurable functions: Volterra and quasi-nilpotencyDiffer. Equations199834101403141117130110958.47014
– reference: SuminV.I.Controlled Volterra functional equations and contraction mapping principleTr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk201925. N 12622783935655
– reference: Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz, Moscow: Nauka, 1984. Translated under the title: Functional Analysis, Oxford: Pergamon, 1982.
– reference: SuminV.I.The features of gradient methods for distributed optimal-control problemsUSSR Comput. Math. Math. Phys.199030111510.1016/0041-5553(90)90002-A
– reference: TersenovA.The Dirichlet problem for second order semilinear elliptic and parabolic equationsDiffer. Equat. Appl.20091339341125549751177.35100
– reference: SuminV.I.Conditions of stability for the existence of global solutions of controlled boundary value problems for nonlinear parabolic equationsVestn. Tambov. Gos. Univ. Ser. Estestv. Tekh. Nauki200054493495
– volume: 25
  start-page: 230
  issue: 2
  year: 2015
  ident: 2370_CR18
  publication-title: Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki
  doi: 10.20537/vm150207
– volume: 34
  start-page: 1403
  issue: 10
  year: 1998
  ident: 2370_CR35
  publication-title: Differ. Equations
– ident: 2370_CR3
  doi: 10.1002/mana.19750672207
– volume: 5
  start-page: 493
  issue: 4
  year: 2000
  ident: 2370_CR11
  publication-title: Vestn. Tambov. Gos. Univ. Ser. Estestv. Tekh. Nauki
– volume: 61
  start-page: 566
  issue: 5
  year: 1997
  ident: 2370_CR2
  publication-title: Math. Notes
  doi: 10.1007/BF02355077
– ident: 2370_CR34
– volume: 41
  start-page: 712
  issue: 5
  year: 2005
  ident: 2370_CR4
  publication-title: Differ. Equations
  doi: 10.1007/s10625-005-0206-2
– ident: 2370_CR8
– volume: 10
  start-page: 53
  issue: 1
  year: 1978
  ident: 2370_CR24
  publication-title: J. Math. Sci.
  doi: 10.1007/BF01109723
– ident: 2370_CR16
– volume: 58
  start-page: 2018
  issue: 12
  year: 2018
  ident: 2370_CR20
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542518120096
– volume: 30
  start-page: 92
  issue: 1
  year: 2020
  ident: 2370_CR23
  publication-title: Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki
  doi: 10.35634/vm200107
– volume: 61
  start-page: 72
  issue: 6
  year: 2017
  ident: 2370_CR22
  publication-title: Russ. Math.
  doi: 10.3103/S1066369X1706010X
– volume: 30
  start-page: 1
  issue: 1
  year: 1990
  ident: 2370_CR14
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(90)90002-A
– volume: 51
  start-page: 759
  issue: 32
  year: 2018
  ident: 2370_CR19
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.454
– volume: 296
  start-page: 215
  issue: 2
  year: 1993
  ident: 2370_CR28
  publication-title: Math. Ann.
  doi: 10.1007/BF01445103
– volume: 62
  start-page: 53
  issue: 11
  year: 2018
  ident: 2370_CR32
  publication-title: Russ. Math.
  doi: 10.3103/S1066369X18110063
– volume-title: Controle de systèmes distribués singuliers
  year: 1983
  ident: 2370_CR5
– volume: 24
  start-page: 1193
  issue: 8
  year: 1995
  ident: 2370_CR29
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/0362-546X(94)00190-S
– ident: 2370_CR25
– volume: 53
  start-page: 1839
  issue: 12
  year: 2013
  ident: 2370_CR15
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S096554251312004X
– ident: 2370_CR10
– ident: 2370_CR33
– ident: 2370_CR12
– volume: 1
  start-page: 393
  issue: 3
  year: 2009
  ident: 2370_CR30
  publication-title: Differ. Equat. Appl.
– ident: 2370_CR9
– ident: 2370_CR7
– volume: 40
  start-page: 3
  year: 2006
  ident: 2370_CR26
  publication-title: Sovrem. Mat. Pril.
– ident: 2370_CR1
– ident: 2370_CR13
– ident: 2370_CR17
– volume: 25. N 1
  start-page: 262
  year: 2019
  ident: 2370_CR21
  publication-title: Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk
– volume-title: Optimal Control of Distributed Systems. Theory and Applications
  year: 2000
  ident: 2370_CR6
– volume: 264
  start-page: 1475
  issue: 3
  year: 2018
  ident: 2370_CR31
  publication-title: J. Differ. Equat.
  doi: 10.1016/j.jde.2017.09.045
– ident: 2370_CR27
  doi: 10.1090/gsm/112/07
SSID ssj0009715
Score 2.2569292
Snippet This paper continues the author’s research on the problem of preserving the solvability of controlled operator equations. As a preliminary result (which is of...
This paper continues the author's research on the problem of preserving the solvability ofcontrolled operator equations. As a preliminary result (which is of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Banach spaces
Difference and Functional Equations
Differential equations
Existence theorems
Linear operators
Lipschitz condition
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear control
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
Uniqueness
Title Operator Equations of the Second Kind: Theorems on the Existence and Uniqueness of the Solution and on the Preservation of Solvability
URI https://link.springer.com/article/10.1134/S0012266122050056
https://www.proquest.com/docview/2708280899
Volume 58
WOSCitedRecordID wos000847695400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1608-3083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009715
  issn: 0012-2661
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB7cDnpwF58bOQhuFNqkqzeRJ4IrbngrSZqCoM-lT9E_4O92Jk2fuIKeZyYtzSyZTuYbgGXuK4WZT-iVIjVeGIvAk4H00fCkzEQUiMTYnd5PDg_Ty8vs2PVxV81t96YkaT11PXckpJ7egFM4odZQQrDsh0GMdilZ48npxTvSbtKMLeAesbtS5rdLfAhGn13yl9qoDTk7Y_962XEYdSdMtlWrxAT0mc4kjBz04FmrSZhwFl2xVQc7vTYFr0d3xtbcWfu-xv-u2G3JUIydUtZcsD3M3zeZ7eY3N0jsWGL7mTQFV2MSec4tICz5z56wU25LdjJ08aP5G0x8yPNUA4a_TMP5Tvtse9dzUxo8zdOo66XcqLBIS6lx05PISKWCTIeBLzHhLYpElEUcxBFXggwSj3PK1wkvlfEVZt-REjMw0LntmFlgxui0yIShGTToW4wqVKBFnBmlMK-TogV-s125dhDmNEnjOrepjAjzL9-9Bes9kbsav-M35hXSgZxsG9fV0rUo4NsRSla-hapFB7QYORcaNcmd0Vc5TwgPkOqoLdho1OKd_ONj5_7EPQ_DnFow7KXLBRjoPjyaRRjST92r6mHJ2sIbSrX_Yw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB4BrVR4oE0KIhztPlTqgSzZuz77hqqgVCRpVZIqb9buei0hQTicovIH-N3MrNdBJbRSed6ZteWdY8cz8w3AO-4rhZFP6JUiNV4Yi8CTgfRR8aTMRBSIxNiT7ifDYTqZZN9dH3fVVLs3KUlrqeu5IyH19Aac3Am1hhKC5TI8C9FhUR3fj-Of90i7STO2gHtE7lKZj27xhzN6aJIXcqPW5Ry-fNLLvoJ1d8NkB7VItGDJTNuwNpjDs1ZtaDmNrtgHBzv98TXcfrswNufOupc1_nfFzkuGbOyYouaCHWH8_pnZbn5zhotTu9j9TZKCuzGJNGMLCEv2c87shNsuOx4q_Gj-BhMd0lzXgOE3GzA-7I6-9Dw3pcHTPI1mXsqNCou0lBoPPYmMVCrIdBj4EgPeokhEWcRBHHElSCHxOqd8nfBSGV9h9B0psQkr0_Op2QJmjE6LTBiaQYO2xahCBVrEmVEK4zopOuA3x5VrB2FOkzROcxvKiDBf-O4d-DRnuajxO_5F_J5kICfdxn21dC0K-HaEkpUfoGjRBS1Gyt1GTHKn9FXOE8IDpDxqB_Ybsbhf_utjt_-L-i286I0G_bz_dXi0A6uc2jFsAeYurMyufpk9eK6vZyfV1RurF3dJqgJW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWiE4UF4VWyj4gAQtikjsPLkhuisQsEWiW-0tsh1HqgRhIVvU_gF-NzOOs6ilrYQ4e8aJ4m_GnoznG4At7iuFkU_olSI1XhiLwJOB9NHwpMxEFIjE2JU-Tfr9dDjMzl2f07q97d6mJJuaBmJpqsZ7o6J0PUhCqu8NOG0tVCZKbJZT8DqknkEUrl98e2TdTdoWBtwjcZfW_OsUv21Mf7rnJ3lSu_303r74xRdg3p082UEDlUV4ZaolmDub0LbWS7DoLL1mO46O-uMy3H8ZGZuLZ92bhhe8ZtclQzV2QdF0wU4wrt9ntsrfXOFgZQe7PwlBOBuTKDOwRLHkVyfKDvR22OnQhZD2LzHJocxdQyT-awUGve7XwyPPdW_wNE-jsZdyo8IiLaVGMCSRkUoFmcZVkhgIF0UiyiIO4ogrQYaKxzzl64SXyvgKo_JIiXcwXV1XZhWYMTotMmGoNw36HKMKFWgRZ0YpjPek6IDfLl2uHbU5ddi4zG2II8L8yXfvwKeJyqjh9fif8DbhISebx3m1dKUL-HbEnpUfIMzo4Baj5HoLmdw5gzrnCfEEUn61A7stRB6H__nY98-S3oSZ88-9_PS4f7IGs5yqNOy9zHWYHt_-MB_gjb4bf69vN6yJPACEWQs6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+Equations+of+the+Second+Kind%3A+Theorems+on+the+Existence+and+Uniqueness+of+the+Solution+and+on+the+Preservation+of+Solvability&rft.jtitle=Differential+equations&rft.au=Chernov%2C+A.+V.&rft.date=2022-05-01&rft.issn=0012-2661&rft.eissn=1608-3083&rft.volume=58&rft.issue=5&rft.spage=649&rft.epage=661&rft_id=info:doi/10.1134%2FS0012266122050056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0012266122050056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon