Adaptation Regularization: A General Framework for Transfer Learning

Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: di...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 26; no. 5; pp. 1076 - 1089
Main Authors: Mingsheng Long, Jianmin Wang, Guiguang Ding, Pan, Sinno Jialin, Yu, Philip S.
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets.
AbstractList Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets.
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets. [PUBLICATION ABSTRACT]
Author Guiguang Ding
Pan, Sinno Jialin
Yu, Philip S.
Mingsheng Long
Jianmin Wang
Author_xml – sequence: 1
  surname: Mingsheng Long
  fullname: Mingsheng Long
  email: longming-sheng@gmail.com
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Jianmin Wang
  fullname: Jianmin Wang
  email: jimwang@tsinghua.edu.cn
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 3
  surname: Guiguang Ding
  fullname: Guiguang Ding
  email: dinggg@tsinghua.edu.cn
  organization: Sch. of Software, Tsinghua Univ., Beijing, China
– sequence: 4
  givenname: Sinno Jialin
  surname: Pan
  fullname: Pan, Sinno Jialin
  email: jspan@i2r.a-star.edu.sg
  organization: Inst. of Infocomm Res., Singapore, Singapore
– sequence: 5
  givenname: Philip S.
  surname: Yu
  fullname: Yu, Philip S.
  email: psyu@uic.edu
  organization: Dept. of Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA
BookMark eNp1kE1Lw0AQhhepYFs9evIS8Jw6sx_NrrdS2yoWBKnnsE1mS2q6qZsU0V9vasSD4GnmheedgWfAer7yxNglwggRzM3q8W424oCijXjC-qiUjjka7LU7SIylkMkZG9T1FgB0orHP7ia53Te2KSofPdPmUNpQfH7H22gSLchTsGU0D3ZH71V4jVwVolWwvnYUoiXZ4Au_OWenzpY1XfzMIXuZz1bT-3j5tHiYTpZxxrVqYuUEcCdyARqEzHJhjYWxJuIZkgHOheLJGlEa59aJJZNkOsvRmrWDXAkhhuy6u7sP1duB6ibdVofg25cpKmmURCl1S8UdlYWqrgO5dB-KnQ0fKUJ6FJUeRaVHUW3Elhd_-KzojDTBFuW_rauuVRDR74exUgA4Fl8HCnV8
CODEN ITKEEH
CitedBy_id crossref_primary_10_3233_IDA_215813
crossref_primary_10_1093_biostatistics_kxaa001
crossref_primary_10_1109_TCBB_2022_3142748
crossref_primary_10_1109_ACCESS_2020_3035422
crossref_primary_10_1016_j_knosys_2020_106394
crossref_primary_10_1016_j_knosys_2017_12_016
crossref_primary_10_1007_s42044_023_00144_x
crossref_primary_10_1109_TNNLS_2024_3372004
crossref_primary_10_1016_j_compag_2025_110409
crossref_primary_10_1109_TMM_2023_3251094
crossref_primary_10_1007_s40747_022_00887_3
crossref_primary_10_1088_1361_6501_ab78c4
crossref_primary_10_3390_sym12121994
crossref_primary_10_1016_j_eswa_2024_123739
crossref_primary_10_1109_TKDE_2024_3391019
crossref_primary_10_1016_j_patcog_2024_110538
crossref_primary_10_1016_j_jneumeth_2017_10_011
crossref_primary_10_1016_j_ins_2020_11_007
crossref_primary_10_3906_elk_1503_245
crossref_primary_10_1109_TKDE_2023_3271851
crossref_primary_10_1109_TIE_2016_2627020
crossref_primary_10_1109_ACCESS_2019_2961741
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1016_j_apenergy_2021_117610
crossref_primary_10_1016_j_cviu_2021_103166
crossref_primary_10_1016_j_measurement_2022_111986
crossref_primary_10_1109_TFUZZ_2019_2931870
crossref_primary_10_1007_s44336_024_00003_8
crossref_primary_10_1016_j_ymssp_2019_106344
crossref_primary_10_1109_TCSVT_2023_3332353
crossref_primary_10_1109_TII_2025_3552652
crossref_primary_10_1007_s10489_023_04706_1
crossref_primary_10_1049_iet_ipr_2019_1434
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1016_j_snb_2020_129162
crossref_primary_10_1109_TPAMI_2021_3128560
crossref_primary_10_1016_j_knosys_2022_109886
crossref_primary_10_1016_j_ymssp_2019_106550
crossref_primary_10_1109_ACCESS_2017_2782884
crossref_primary_10_1007_s11063_019_10152_3
crossref_primary_10_1007_s11063_022_11126_8
crossref_primary_10_1016_j_patcog_2018_10_023
crossref_primary_10_1109_MIS_2020_2972791
crossref_primary_10_1016_j_knosys_2019_105149
crossref_primary_10_1109_ACCESS_2019_2955712
crossref_primary_10_1109_TIE_2021_3090701
crossref_primary_10_1016_j_engappai_2024_107877
crossref_primary_10_1016_j_knosys_2019_104975
crossref_primary_10_1109_ACCESS_2023_3237025
crossref_primary_10_1109_TIM_2023_3248101
crossref_primary_10_1016_j_compbiolchem_2016_02_011
crossref_primary_10_1016_j_mtchem_2025_103051
crossref_primary_10_1109_TNNLS_2021_3134673
crossref_primary_10_1109_TASE_2023_3323773
crossref_primary_10_1109_TMM_2022_3148592
crossref_primary_10_1016_j_neucom_2020_02_049
crossref_primary_10_1016_j_patcog_2022_108918
crossref_primary_10_1109_TTE_2023_3305555
crossref_primary_10_1155_2020_7285057
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1007_s40305_019_00248_x
crossref_primary_10_3390_s20216321
crossref_primary_10_1109_ACCESS_2019_2943188
crossref_primary_10_1109_TPAMI_2022_3228937
crossref_primary_10_1016_j_neucom_2025_131122
crossref_primary_10_3390_en14196316
crossref_primary_10_1007_s00521_020_05228_4
crossref_primary_10_1186_s40537_016_0043_6
crossref_primary_10_1007_s10489_021_02194_9
crossref_primary_10_1007_s13042_023_02082_3
crossref_primary_10_1109_TNNLS_2021_3093468
crossref_primary_10_1016_j_jechem_2025_08_035
crossref_primary_10_1109_ACCESS_2019_2919535
crossref_primary_10_1109_TNNLS_2018_2875144
crossref_primary_10_1007_s11227_018_2398_2
crossref_primary_10_1109_ACCESS_2019_2905264
crossref_primary_10_1080_00207543_2021_1989076
crossref_primary_10_1145_3360309
crossref_primary_10_1109_TCSVT_2022_3192135
crossref_primary_10_1016_j_patrec_2025_03_018
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1109_TFUZZ_2021_3070156
crossref_primary_10_1016_j_knosys_2021_107309
crossref_primary_10_3233_JCM_204399
crossref_primary_10_1007_s40747_023_01283_1
crossref_primary_10_1109_TGRS_2023_3323579
crossref_primary_10_1109_TNNLS_2021_3105868
crossref_primary_10_3389_fpsyg_2021_758967
crossref_primary_10_1109_TNSRE_2016_2544108
crossref_primary_10_1016_j_ins_2017_08_034
crossref_primary_10_1016_j_eswa_2024_126368
crossref_primary_10_1109_TKDE_2021_3114536
crossref_primary_10_1145_3612930
crossref_primary_10_1155_2018_6714520
crossref_primary_10_1016_j_patcog_2016_03_009
crossref_primary_10_1007_s10462_024_11080_y
crossref_primary_10_1109_TPAMI_2024_3370978
crossref_primary_10_1109_TKDE_2017_2685597
crossref_primary_10_1109_TNNLS_2022_3151646
crossref_primary_10_1109_TCSVT_2021_3104835
crossref_primary_10_1016_j_cmpb_2019_105159
crossref_primary_10_1016_j_compind_2018_07_001
crossref_primary_10_1109_TNNLS_2016_2618765
crossref_primary_10_1016_j_knosys_2018_05_011
crossref_primary_10_1016_j_ins_2019_12_067
crossref_primary_10_1109_TAI_2023_3293077
crossref_primary_10_1109_TGRS_2022_3178703
crossref_primary_10_1109_TIM_2017_2666203
crossref_primary_10_1007_s10462_023_10545_w
crossref_primary_10_1109_TMM_2021_3073258
crossref_primary_10_3390_e24070966
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1109_TITS_2020_2973673
crossref_primary_10_1109_TCYB_2016_2523538
crossref_primary_10_1108_K_08_2016_0196
crossref_primary_10_1109_TKDE_2021_3075238
crossref_primary_10_1007_s10044_017_0664_1
crossref_primary_10_1016_j_neucom_2019_02_013
crossref_primary_10_1007_s10489_019_01512_6
crossref_primary_10_3390_app12199636
crossref_primary_10_3390_math10234409
crossref_primary_10_3233_JIFS_232627
crossref_primary_10_1007_s42486_019_00018_x
crossref_primary_10_1109_JSEN_2022_3174396
crossref_primary_10_1016_j_patcog_2018_07_035
crossref_primary_10_1007_s10489_019_01610_5
crossref_primary_10_1007_s11263_023_01865_z
crossref_primary_10_1016_j_neucom_2018_01_048
crossref_primary_10_1109_TNSE_2019_2942341
crossref_primary_10_1109_TIP_2019_2917867
crossref_primary_10_3233_JIFS_234920
crossref_primary_10_1007_s11235_022_00901_6
crossref_primary_10_1016_j_patcog_2022_108700
crossref_primary_10_1109_TCBB_2020_3002562
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_1109_TNNLS_2021_3139119
crossref_primary_10_1016_j_neucom_2019_09_104
crossref_primary_10_1007_s10115_021_01586_0
crossref_primary_10_3233_JIFS_189136
crossref_primary_10_1016_j_saa_2023_122418
crossref_primary_10_1109_LGRS_2016_2568263
crossref_primary_10_1016_j_knosys_2021_107982
crossref_primary_10_1007_s11042_016_3253_1
crossref_primary_10_1016_j_engappai_2016_12_004
crossref_primary_10_1007_s10044_024_01390_w
crossref_primary_10_1007_s12559_018_9555_z
crossref_primary_10_1109_TETCI_2018_2868326
crossref_primary_10_1109_TIM_2021_3122742
crossref_primary_10_1109_TGRS_2022_3169216
crossref_primary_10_1016_j_neucom_2017_08_049
crossref_primary_10_1109_JPROC_2020_3004555
crossref_primary_10_1109_TII_2020_3028103
crossref_primary_10_1007_s10489_024_05706_5
crossref_primary_10_1016_j_inffus_2021_05_013
crossref_primary_10_1016_j_knosys_2016_01_021
crossref_primary_10_1016_j_knosys_2021_107066
crossref_primary_10_1016_j_neucom_2019_01_019
crossref_primary_10_1109_JSTARS_2022_3206753
crossref_primary_10_1109_TFUZZ_2020_2994979
crossref_primary_10_1109_JIOT_2024_3361253
crossref_primary_10_1109_TNNLS_2019_2935608
crossref_primary_10_1109_JAS_2023_123531
crossref_primary_10_1016_j_neucom_2021_05_041
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_1016_j_eswa_2020_113238
crossref_primary_10_1109_TCSVT_2019_2942688
crossref_primary_10_1016_j_neunet_2020_01_009
crossref_primary_10_1109_TNNLS_2020_3017213
crossref_primary_10_1007_s11042_020_10193_0
crossref_primary_10_1016_j_phycom_2023_102015
crossref_primary_10_1177_16878132221135740
crossref_primary_10_1109_TCYB_2020_2980815
crossref_primary_10_1109_TCYB_2021_3070545
crossref_primary_10_1007_s11063_022_10841_6
crossref_primary_10_1155_2018_6323414
crossref_primary_10_1007_s00500_020_05105_1
crossref_primary_10_1007_s11432_024_4273_8
crossref_primary_10_1109_TCE_2024_3419788
crossref_primary_10_1109_TSC_2022_3213238
crossref_primary_10_1109_TPAMI_2025_3541207
crossref_primary_10_1109_TNNLS_2016_2538282
crossref_primary_10_3390_rs9040337
crossref_primary_10_1016_j_knosys_2022_109022
crossref_primary_10_1007_s11063_022_10828_3
crossref_primary_10_1016_j_bbe_2018_04_008
crossref_primary_10_1109_TFUZZ_2016_2633379
crossref_primary_10_1109_TMM_2017_2763322
crossref_primary_10_1109_TNSRE_2022_3229066
crossref_primary_10_1109_TAFFC_2017_2705696
crossref_primary_10_1109_TNNLS_2016_2638321
crossref_primary_10_1177_14759217221110441
crossref_primary_10_1016_j_neucom_2019_08_078
crossref_primary_10_1016_j_eswa_2019_02_005
crossref_primary_10_1109_TGRS_2020_3026387
crossref_primary_10_1109_TKDE_2024_3372462
crossref_primary_10_3390_brainsci11050603
crossref_primary_10_1016_j_ymssp_2023_110164
crossref_primary_10_1007_s00500_019_04487_1
crossref_primary_10_1016_j_cie_2020_107015
crossref_primary_10_1016_j_inffus_2022_10_026
crossref_primary_10_1088_1361_6501_ace7e6
crossref_primary_10_1016_j_jsv_2021_116245
crossref_primary_10_1016_j_neucom_2018_05_029
crossref_primary_10_1016_j_ymssp_2022_108918
crossref_primary_10_1109_ACCESS_2019_2944211
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1007_s11760_018_1405_7
crossref_primary_10_1007_s11042_022_12226_2
crossref_primary_10_1109_TIP_2022_3216781
crossref_primary_10_1109_TMM_2024_3411316
crossref_primary_10_1109_TNNLS_2022_3199619
crossref_primary_10_1007_s11063_024_11677_y
crossref_primary_10_1109_TCSS_2022_3153660
crossref_primary_10_1016_j_patcog_2022_109154
crossref_primary_10_1109_ACCESS_2019_2958736
crossref_primary_10_1109_TFUZZ_2019_2958299
crossref_primary_10_3233_JIFS_191136
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1016_j_bspc_2022_104314
crossref_primary_10_1016_j_bspc_2022_104435
crossref_primary_10_1016_j_patcog_2020_107658
crossref_primary_10_1016_j_patrec_2020_06_007
crossref_primary_10_1109_TMM_2022_3145235
crossref_primary_10_1109_TIE_2019_2898619
crossref_primary_10_1109_TNNLS_2022_3151683
crossref_primary_10_1177_00131644221132723
crossref_primary_10_1016_j_knosys_2023_110894
crossref_primary_10_1109_TCYB_2020_3004263
crossref_primary_10_1109_TKDE_2021_3112815
crossref_primary_10_1016_j_patrec_2019_06_007
crossref_primary_10_3390_s21103382
crossref_primary_10_1016_j_patcog_2024_110473
crossref_primary_10_3233_JIFS_190055
crossref_primary_10_1016_j_neunet_2018_02_004
crossref_primary_10_1007_s10115_016_0944_x
crossref_primary_10_1016_j_phycom_2022_101973
crossref_primary_10_1016_j_ymssp_2021_108426
crossref_primary_10_1016_j_eswa_2020_114078
crossref_primary_10_1109_ACCESS_2019_2939876
crossref_primary_10_1145_3477052
crossref_primary_10_1016_j_neuroimage_2017_07_028
crossref_primary_10_1109_TCCN_2020_2964761
crossref_primary_10_1016_j_neucom_2019_01_056
crossref_primary_10_3389_fnins_2020_00496
crossref_primary_10_1109_TNSRE_2018_2850308
crossref_primary_10_1155_2020_8827657
crossref_primary_10_1109_TCBB_2019_2914103
crossref_primary_10_1016_j_neucom_2015_03_020
crossref_primary_10_1109_JSEN_2019_2939360
crossref_primary_10_1109_TCYB_2020_3004398
crossref_primary_10_1145_2903725
crossref_primary_10_1109_ACCESS_2023_3343759
crossref_primary_10_2478_amcs_2019_0045
crossref_primary_10_1016_j_knosys_2021_107158
crossref_primary_10_1109_JSEN_2019_2949057
crossref_primary_10_1007_s11063_023_11240_1
crossref_primary_10_1016_j_ins_2022_03_059
crossref_primary_10_1016_j_knosys_2019_03_021
crossref_primary_10_1109_TGRS_2023_3307434
crossref_primary_10_1109_TKDE_2023_3270118
crossref_primary_10_1109_TGRS_2021_3070050
crossref_primary_10_1109_TKDE_2020_2984212
crossref_primary_10_3390_app13031935
crossref_primary_10_1016_j_knosys_2019_03_024
crossref_primary_10_1109_TIP_2016_2631887
crossref_primary_10_1109_TKDE_2018_2843342
crossref_primary_10_1016_j_neucom_2022_09_124
crossref_primary_10_1038_srep41831
crossref_primary_10_1155_2018_8425821
crossref_primary_10_1109_TAI_2022_3196813
crossref_primary_10_1109_TKDE_2016_2554549
crossref_primary_10_1016_j_apacoust_2022_108919
crossref_primary_10_1109_TGRS_2020_3021140
crossref_primary_10_1016_j_eswa_2023_119907
crossref_primary_10_1109_TCYB_2020_2974106
crossref_primary_10_1109_TGRS_2021_3110060
crossref_primary_10_1109_TPAMI_2018_2866846
crossref_primary_10_3390_s22124470
crossref_primary_10_1016_j_patrec_2015_12_015
crossref_primary_10_1145_3502287
crossref_primary_10_1109_TASE_2018_2865663
crossref_primary_10_1016_j_engappai_2023_107498
crossref_primary_10_1109_TASE_2022_3218132
crossref_primary_10_1109_JIOT_2024_3421536
crossref_primary_10_1016_j_neucom_2015_12_125
crossref_primary_10_1002_ail2_102
crossref_primary_10_1016_j_measurement_2020_107570
crossref_primary_10_1016_j_measurement_2019_107155
crossref_primary_10_1007_s00500_022_06846_x
crossref_primary_10_1007_s10489_021_02564_3
crossref_primary_10_1109_TNNLS_2021_3133760
crossref_primary_10_1109_TEVC_2023_3346406
crossref_primary_10_1109_TIE_2021_3066938
crossref_primary_10_1109_TKDE_2022_3174336
crossref_primary_10_1016_j_knosys_2023_110586
crossref_primary_10_1109_ACCESS_2022_3184685
crossref_primary_10_1186_s40644_019_0227_3
crossref_primary_10_1016_j_engappai_2023_106172
crossref_primary_10_1007_s00521_020_05513_2
crossref_primary_10_1007_s13042_021_01428_z
crossref_primary_10_1002_int_22120
crossref_primary_10_1109_TIM_2022_3224521
crossref_primary_10_1109_TCYB_2020_2987632
crossref_primary_10_1016_j_neucom_2023_02_030
crossref_primary_10_1109_TKDE_2014_2373376
crossref_primary_10_1007_s00170_021_06780_6
crossref_primary_10_1109_TCSVT_2019_2900467
crossref_primary_10_1016_j_engappai_2023_107700
crossref_primary_10_1016_j_ins_2022_02_008
crossref_primary_10_1109_TKDE_2021_3060037
crossref_primary_10_1109_TIP_2018_2839528
crossref_primary_10_1109_TPAMI_2022_3146234
crossref_primary_10_1109_TMM_2024_3521731
crossref_primary_10_1007_s13198_024_02684_2
crossref_primary_10_1016_j_ymssp_2024_111327
crossref_primary_10_1007_s10489_021_02609_7
crossref_primary_10_1109_TKDE_2022_3185233
crossref_primary_10_1007_s12652_021_03426_z
crossref_primary_10_1016_j_trc_2018_07_008
crossref_primary_10_1109_TIP_2020_3031220
crossref_primary_10_1109_TNNLS_2019_2957229
crossref_primary_10_1016_j_ins_2014_11_041
crossref_primary_10_1016_j_neucom_2021_12_009
crossref_primary_10_1007_s00138_020_01093_2
crossref_primary_10_1109_TGRS_2025_3592206
crossref_primary_10_1016_j_neunet_2019_02_007
crossref_primary_10_1109_TGRS_2023_3348953
crossref_primary_10_1017_dce_2025_3
crossref_primary_10_1109_TIP_2015_2462023
crossref_primary_10_1016_j_image_2021_116455
crossref_primary_10_1109_TSMC_2020_2997922
crossref_primary_10_1016_j_knosys_2019_105344
crossref_primary_10_1080_1206212X_2021_1885786
crossref_primary_10_1109_TSMC_2017_2735997
crossref_primary_10_3390_s20164367
crossref_primary_10_1007_s42044_020_00062_2
crossref_primary_10_1016_j_knosys_2021_106809
crossref_primary_10_1051_jnwpu_20234120344
crossref_primary_10_1088_1742_6596_1881_4_042059
crossref_primary_10_1109_THMS_2016_2608931
crossref_primary_10_1016_j_ymssp_2020_107142
crossref_primary_10_1016_j_engappai_2019_103267
crossref_primary_10_1007_s11063_022_10967_7
crossref_primary_10_1109_TAI_2021_3123935
crossref_primary_10_1145_3340240
crossref_primary_10_1007_s10489_021_02771_y
crossref_primary_10_1007_s10489_018_1323_y
crossref_primary_10_1007_s11042_023_17635_5
crossref_primary_10_1016_j_neucom_2016_05_077
crossref_primary_10_1109_TIP_2024_3418581
crossref_primary_10_1016_j_ymssp_2025_113013
crossref_primary_10_1109_TIT_2024_3441574
crossref_primary_10_1016_j_saa_2024_123991
crossref_primary_10_1109_LGRS_2019_2907139
crossref_primary_10_3390_electronics11050810
crossref_primary_10_1109_TCYB_2021_3133890
crossref_primary_10_1016_j_neucom_2019_04_025
crossref_primary_10_1007_s11760_020_01745_w
crossref_primary_10_1109_TIP_2016_2612827
crossref_primary_10_1109_TKDE_2017_2669193
crossref_primary_10_1109_TMM_2024_3407696
crossref_primary_10_1016_j_knosys_2019_105233
crossref_primary_10_1109_TCSVT_2021_3087486
crossref_primary_10_3390_s19183992
crossref_primary_10_1145_3291124
crossref_primary_10_1016_j_est_2025_115947
crossref_primary_10_3390_electronics14153146
crossref_primary_10_1016_j_cropro_2024_106690
crossref_primary_10_1186_s12859_022_05128_5
crossref_primary_10_1109_TIP_2019_2929421
crossref_primary_10_1016_j_cviu_2017_06_002
crossref_primary_10_1109_JSEN_2022_3165398
crossref_primary_10_1109_TSMC_2022_3184716
crossref_primary_10_1109_TASE_2020_2998586
crossref_primary_10_1109_ACCESS_2020_2996796
crossref_primary_10_1109_JSTARS_2020_3006879
Cites_doi 10.1137/1.9781611972825.47
10.1145/1963405.1963448
10.1145/1772690.1772767
10.1109/TKDE.2009.191
10.3115/1610075.1610094
10.1109/TKDE.2011.143
10.1109/TPAMI.2010.231
10.1109/TIT.2007.911294
10.1109/ICDM.2011.92
10.1145/1401890.1401951
10.1145/1273496.1273521
10.1109/TKDE.2011.252
10.1145/1401890.1401928
10.1145/1961189.1961199
10.1109/TKDE.2009.126
10.1145/1557019.1557045
10.1109/TPAMI.2011.114
10.1145/1281192.1281218
10.1109/TKDE.2012.75
10.1145/1553374.1553454
10.1109/TNN.2010.2091281
10.1145/1645953.1646121
10.1109/TPAMI.2009.57
10.1016/j.patcog.2012.04.014
10.1145/1557019.1557130
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2013.111
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1089
ExternalDocumentID 3387986371
10_1109_TKDE_2013_111
6550016
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c285t-5f302f3d308034cd3a9a068ee2c1e90223527b1149ffb7ae97c8cd1a9bf0d5333
IEDL.DBID RIE
ISICitedReferencesCount 500
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337965900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Oct 05 00:13:59 EDT 2025
Sat Nov 29 04:46:36 EST 2025
Tue Nov 18 21:52:56 EST 2025
Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords manifold regularization
distribution adaptation
Transfer learning
generalization error
adaptation regularization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c285t-5f302f3d308034cd3a9a068ee2c1e90223527b1149ffb7ae97c8cd1a9bf0d5333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1549541448
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_1549541448
crossref_primary_10_1109_TKDE_2013_111
crossref_citationtrail_10_1109_TKDE_2013_111
ieee_primary_6550016
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References argyriou (ref32) 0
ref12
ref37
ref15
ref36
xiao (ref21) 0
ref30
long (ref3) 0
ben-david (ref38) 0
ref2
ref1
belkin (ref22) 2006; 7
ref39
ref17
ref16
ref19
ref18
zhu (ref6) 0
wang (ref27) 0
liu (ref33) 0
cai (ref42) 0
cai (ref41) 2011; 33
ref23
ref26
ref25
ref20
pan (ref10) 2011; 22
schölkopf (ref35) 0
yang (ref14) 0
ref28
ref29
ref8
pan (ref11) 0
ref9
ref4
jiang (ref24) 0
vapnik (ref34) 1998
ref5
ref40
daumé (ref31) 0
gretton (ref13) 0
rohrbach (ref7) 0
References_xml – year: 0
  ident: ref27
  article-title: Heterogeneous domain adaptation using manifold alignment
  publication-title: Proc 25th AAAI
– ident: ref37
  doi: 10.1137/1.9781611972825.47
– ident: ref8
  doi: 10.1145/1963405.1963448
– ident: ref5
  doi: 10.1145/1772690.1772767
– ident: ref1
  doi: 10.1109/TKDE.2009.191
– ident: ref4
  doi: 10.3115/1610075.1610094
– ident: ref2
  doi: 10.1109/TKDE.2011.143
– year: 0
  ident: ref24
  article-title: Instance weighting for domain adaptation in NLP
  publication-title: Proc 45th ACL
– year: 0
  ident: ref33
  article-title: Semi-supervised multitask learning
  publication-title: Proc Adv NIPS
– volume: 33
  start-page: 1548
  year: 2011
  ident: ref41
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– ident: ref39
  doi: 10.1109/TIT.2007.911294
– ident: ref20
  doi: 10.1109/ICDM.2011.92
– year: 1998
  ident: ref34
  publication-title: Statistical Learning Theory
– ident: ref26
  doi: 10.1145/1401890.1401951
– year: 0
  ident: ref13
  article-title: A kernel method for the two-sample problem
  publication-title: Proc NIPS
– ident: ref23
  doi: 10.1145/1273496.1273521
– ident: ref28
  doi: 10.1109/TKDE.2011.252
– year: 0
  ident: ref21
  article-title: Semi-supervised kernel matching for domain adaptation
  publication-title: Proc 26th AAAI
– ident: ref40
  doi: 10.1145/1401890.1401928
– ident: ref36
  doi: 10.1145/1961189.1961199
– year: 0
  ident: ref14
  article-title: Cross-domain video concept detection using adaptive svms
  publication-title: Proc 15th ACM MM
– year: 0
  ident: ref31
  article-title: Co-regularization based semi-supervised domain adaptation
  publication-title: Proc Adv NIPS
– ident: ref12
  doi: 10.1109/TKDE.2009.126
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref22
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– year: 0
  ident: ref3
  article-title: Transfer learning with graph co-regularization
  publication-title: Proc 26th AAAI
– ident: ref30
  doi: 10.1145/1557019.1557045
– ident: ref17
  doi: 10.1109/TPAMI.2011.114
– year: 0
  ident: ref38
  article-title: Analysis of representations for domain adaptation
  publication-title: Proc Adv NIPS
– ident: ref25
  doi: 10.1145/1281192.1281218
– ident: ref29
  doi: 10.1109/TKDE.2012.75
– year: 0
  ident: ref11
  article-title: Transfer learning via dimensionality reduction
  publication-title: Proc of the 22nd AAAI
– year: 0
  ident: ref6
  article-title: Heterogeneous transfer learning for image classification
  publication-title: Proc 25th AAAI
– ident: ref9
  doi: 10.1145/1553374.1553454
– year: 0
  ident: ref42
  article-title: Spectral regression: A unified approach for sparse subspace learning
  publication-title: Proc IEEE ICDM
– year: 0
  ident: ref32
  article-title: Multi-task feature learning
  publication-title: Proc NIPS
– year: 0
  ident: ref7
  article-title: What helps where-And why? Semantic relatedness for knowledge transfer
  publication-title: Proc 23rd IEEE Conf CVPR
– volume: 22
  start-page: 199
  year: 2011
  ident: ref10
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2091281
– ident: ref15
  doi: 10.1145/1645953.1646121
– ident: ref19
  doi: 10.1109/TPAMI.2009.57
– ident: ref16
  doi: 10.1016/j.patcog.2012.04.014
– year: 0
  ident: ref35
  article-title: A generalized representer theorem
  publication-title: Proc 14th Annu Conf COLT
– ident: ref18
  doi: 10.1145/1557019.1557130
SSID ssj0008781
Score 2.6105282
Snippet Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1076
SubjectTerms Artificial Intelligence
Classifier design and evaluation
Computing Methodologies
Database Applications
Database Management
Design Methodology
Feature extraction
Information Technology and Systems
Joints
Kernel
Knowledge acquisition
Learning
Manifolds
Mining methods and algorithms
Modeling structured
Pattern Recognition
Probability distribution
Risk management
textual and multimedia data
Title Adaptation Regularization: A General Framework for Transfer Learning
URI https://ieeexplore.ieee.org/document/6550016
https://www.proquest.com/docview/1549541448
Volume 26
WOSCitedRecordID wos000337965900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8aAHUdCIounBeGJloWW79UYUYqIhxqDhtum2XWNigPDh73fa7aJGPXjbQ7fZdDqdN9uZ9wDOVahFJhkLuBIiQHyLLsVNFsTMRNKg-6VOY-n5no9G8WQiHkrQ2vTCGGNc8Zm5tI_uLl_P1Nr-KmtHCKcRopShzHmU92ptTt2YO0FSzC4wJ6KMf_Jptsd3NwNbxEXt-fAt_jhBlR-nsAstw-r_PmoPdj2EJP3c5vtQMtMaVAt5BuK9tQY7X7gG63DT13Ke37uTRydAv_AtmFekTzz7NBkWtVoEwSxxgSzDOT0L68sBPA0H4-vbwEsoBKob91ZBL6NhN6OaIjCkTGkqhQyj2Jiu6hiB8RvxF08xJxJZlnJpBFex0h0p0izUiATpIVSms6k5AsJSzg1OwNCyLFUyVT2BcY9pjRAm7agGtIqFTZTnF7cyF2-JyzNCkVg7JNYONu1owMVm-Dwn1vhrYN0u-maQX-8GNAurJd7tlonlm7O65iw-_v2tE9jGeVlesdiEymqxNqewpd5Xr8vFmdtRH6qLyMo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEPoqARRe3BeGIyWKGrNyIQDEiMQcNt2drOmBgg_PDv97XrpkY9eNuh65a-vb7vre99H8ClcCWPQ0odJjh3EN-iSzEVOz5VrVCh-0VGY-l5yEYjfzLhDzmoZr0wSilTfKau9aU5y5czsda_ymothNMIUTZgUytn2W6tbN_1mZEkxfwCsyKPsk9Gzdp40OnqMi5P7xDfIpCRVPmxD5vg0iv877X2Yc-CSNJOrH4AOTUtQiEVaCDWX4uw-4VtsASdtgznyck7eTQS9AvbhHlD2sTyT5NeWq1FEM4SE8pinNPysL4cwlOvO77tO1ZEwRENv7lymrHnNmJPeggNPSqkF_LQbflKNURdcYzgiMBYhFkRj-OIhYoz4QtZD3kUuxKxoHcE-elsqo6B0IgxhRNQtC2NRBiJJsfIR6VEEBPVRRmq6cIGwjKMa6GLt8BkGi4PtB0CbQedeJThKhs-T6g1_hpY0oueDbLrXYZKarXAOt4y0IxzWtmc-ie_33UB2_3x_TAY3o0Gp7CDz6BJ_WIF8qvFWp3BlnhfvS4X5-br-gBLW8wT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+Regularization%3A+A+General+Framework+for+Transfer+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Long%2C+Mingsheng&rft.au=Wang%2C+Jianmin&rft.au=Ding%2C+Guiguang&rft.au=Pan%2C+Sinno+Jialin&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=26&rft.issue=5&rft.spage=1076&rft_id=info:doi/10.1109%2FTKDE.2013.111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3387986371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon