Adaptation Regularization: A General Framework for Transfer Learning
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: di...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 26; no. 5; pp. 1076 - 1089 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets. |
|---|---|
| AbstractList | Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets. Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets. [PUBLICATION ABSTRACT] |
| Author | Guiguang Ding Pan, Sinno Jialin Yu, Philip S. Mingsheng Long Jianmin Wang |
| Author_xml | – sequence: 1 surname: Mingsheng Long fullname: Mingsheng Long email: longming-sheng@gmail.com organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 2 surname: Jianmin Wang fullname: Jianmin Wang email: jimwang@tsinghua.edu.cn organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 3 surname: Guiguang Ding fullname: Guiguang Ding email: dinggg@tsinghua.edu.cn organization: Sch. of Software, Tsinghua Univ., Beijing, China – sequence: 4 givenname: Sinno Jialin surname: Pan fullname: Pan, Sinno Jialin email: jspan@i2r.a-star.edu.sg organization: Inst. of Infocomm Res., Singapore, Singapore – sequence: 5 givenname: Philip S. surname: Yu fullname: Yu, Philip S. email: psyu@uic.edu organization: Dept. of Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA |
| BookMark | eNp1kE1Lw0AQhhepYFs9evIS8Jw6sx_NrrdS2yoWBKnnsE1mS2q6qZsU0V9vasSD4GnmheedgWfAer7yxNglwggRzM3q8W424oCijXjC-qiUjjka7LU7SIylkMkZG9T1FgB0orHP7ia53Te2KSofPdPmUNpQfH7H22gSLchTsGU0D3ZH71V4jVwVolWwvnYUoiXZ4Au_OWenzpY1XfzMIXuZz1bT-3j5tHiYTpZxxrVqYuUEcCdyARqEzHJhjYWxJuIZkgHOheLJGlEa59aJJZNkOsvRmrWDXAkhhuy6u7sP1duB6ibdVofg25cpKmmURCl1S8UdlYWqrgO5dB-KnQ0fKUJ6FJUeRaVHUW3Elhd_-KzojDTBFuW_rauuVRDR74exUgA4Fl8HCnV8 |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_3233_IDA_215813 crossref_primary_10_1093_biostatistics_kxaa001 crossref_primary_10_1109_TCBB_2022_3142748 crossref_primary_10_1109_ACCESS_2020_3035422 crossref_primary_10_1016_j_knosys_2020_106394 crossref_primary_10_1016_j_knosys_2017_12_016 crossref_primary_10_1007_s42044_023_00144_x crossref_primary_10_1109_TNNLS_2024_3372004 crossref_primary_10_1016_j_compag_2025_110409 crossref_primary_10_1109_TMM_2023_3251094 crossref_primary_10_1007_s40747_022_00887_3 crossref_primary_10_1088_1361_6501_ab78c4 crossref_primary_10_3390_sym12121994 crossref_primary_10_1016_j_eswa_2024_123739 crossref_primary_10_1109_TKDE_2024_3391019 crossref_primary_10_1016_j_patcog_2024_110538 crossref_primary_10_1016_j_jneumeth_2017_10_011 crossref_primary_10_1016_j_ins_2020_11_007 crossref_primary_10_3906_elk_1503_245 crossref_primary_10_1109_TKDE_2023_3271851 crossref_primary_10_1109_TIE_2016_2627020 crossref_primary_10_1109_ACCESS_2019_2961741 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1016_j_apenergy_2021_117610 crossref_primary_10_1016_j_cviu_2021_103166 crossref_primary_10_1016_j_measurement_2022_111986 crossref_primary_10_1109_TFUZZ_2019_2931870 crossref_primary_10_1007_s44336_024_00003_8 crossref_primary_10_1016_j_ymssp_2019_106344 crossref_primary_10_1109_TCSVT_2023_3332353 crossref_primary_10_1109_TII_2025_3552652 crossref_primary_10_1007_s10489_023_04706_1 crossref_primary_10_1049_iet_ipr_2019_1434 crossref_primary_10_1109_TNNLS_2022_3183326 crossref_primary_10_1016_j_snb_2020_129162 crossref_primary_10_1109_TPAMI_2021_3128560 crossref_primary_10_1016_j_knosys_2022_109886 crossref_primary_10_1016_j_ymssp_2019_106550 crossref_primary_10_1109_ACCESS_2017_2782884 crossref_primary_10_1007_s11063_019_10152_3 crossref_primary_10_1007_s11063_022_11126_8 crossref_primary_10_1016_j_patcog_2018_10_023 crossref_primary_10_1109_MIS_2020_2972791 crossref_primary_10_1016_j_knosys_2019_105149 crossref_primary_10_1109_ACCESS_2019_2955712 crossref_primary_10_1109_TIE_2021_3090701 crossref_primary_10_1016_j_engappai_2024_107877 crossref_primary_10_1016_j_knosys_2019_104975 crossref_primary_10_1109_ACCESS_2023_3237025 crossref_primary_10_1109_TIM_2023_3248101 crossref_primary_10_1016_j_compbiolchem_2016_02_011 crossref_primary_10_1016_j_mtchem_2025_103051 crossref_primary_10_1109_TNNLS_2021_3134673 crossref_primary_10_1109_TASE_2023_3323773 crossref_primary_10_1109_TMM_2022_3148592 crossref_primary_10_1016_j_neucom_2020_02_049 crossref_primary_10_1016_j_patcog_2022_108918 crossref_primary_10_1109_TTE_2023_3305555 crossref_primary_10_1155_2020_7285057 crossref_primary_10_1109_TIP_2020_3024728 crossref_primary_10_1007_s40305_019_00248_x crossref_primary_10_3390_s20216321 crossref_primary_10_1109_ACCESS_2019_2943188 crossref_primary_10_1109_TPAMI_2022_3228937 crossref_primary_10_1016_j_neucom_2025_131122 crossref_primary_10_3390_en14196316 crossref_primary_10_1007_s00521_020_05228_4 crossref_primary_10_1186_s40537_016_0043_6 crossref_primary_10_1007_s10489_021_02194_9 crossref_primary_10_1007_s13042_023_02082_3 crossref_primary_10_1109_TNNLS_2021_3093468 crossref_primary_10_1016_j_jechem_2025_08_035 crossref_primary_10_1109_ACCESS_2019_2919535 crossref_primary_10_1109_TNNLS_2018_2875144 crossref_primary_10_1007_s11227_018_2398_2 crossref_primary_10_1109_ACCESS_2019_2905264 crossref_primary_10_1080_00207543_2021_1989076 crossref_primary_10_1145_3360309 crossref_primary_10_1109_TCSVT_2022_3192135 crossref_primary_10_1016_j_patrec_2025_03_018 crossref_primary_10_1002_adma_202413430 crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1109_TFUZZ_2021_3070156 crossref_primary_10_1016_j_knosys_2021_107309 crossref_primary_10_3233_JCM_204399 crossref_primary_10_1007_s40747_023_01283_1 crossref_primary_10_1109_TGRS_2023_3323579 crossref_primary_10_1109_TNNLS_2021_3105868 crossref_primary_10_3389_fpsyg_2021_758967 crossref_primary_10_1109_TNSRE_2016_2544108 crossref_primary_10_1016_j_ins_2017_08_034 crossref_primary_10_1016_j_eswa_2024_126368 crossref_primary_10_1109_TKDE_2021_3114536 crossref_primary_10_1145_3612930 crossref_primary_10_1155_2018_6714520 crossref_primary_10_1016_j_patcog_2016_03_009 crossref_primary_10_1007_s10462_024_11080_y crossref_primary_10_1109_TPAMI_2024_3370978 crossref_primary_10_1109_TKDE_2017_2685597 crossref_primary_10_1109_TNNLS_2022_3151646 crossref_primary_10_1109_TCSVT_2021_3104835 crossref_primary_10_1016_j_cmpb_2019_105159 crossref_primary_10_1016_j_compind_2018_07_001 crossref_primary_10_1109_TNNLS_2016_2618765 crossref_primary_10_1016_j_knosys_2018_05_011 crossref_primary_10_1016_j_ins_2019_12_067 crossref_primary_10_1109_TAI_2023_3293077 crossref_primary_10_1109_TGRS_2022_3178703 crossref_primary_10_1109_TIM_2017_2666203 crossref_primary_10_1007_s10462_023_10545_w crossref_primary_10_1109_TMM_2021_3073258 crossref_primary_10_3390_e24070966 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1109_TITS_2020_2973673 crossref_primary_10_1109_TCYB_2016_2523538 crossref_primary_10_1108_K_08_2016_0196 crossref_primary_10_1109_TKDE_2021_3075238 crossref_primary_10_1007_s10044_017_0664_1 crossref_primary_10_1016_j_neucom_2019_02_013 crossref_primary_10_1007_s10489_019_01512_6 crossref_primary_10_3390_app12199636 crossref_primary_10_3390_math10234409 crossref_primary_10_3233_JIFS_232627 crossref_primary_10_1007_s42486_019_00018_x crossref_primary_10_1109_JSEN_2022_3174396 crossref_primary_10_1016_j_patcog_2018_07_035 crossref_primary_10_1007_s10489_019_01610_5 crossref_primary_10_1007_s11263_023_01865_z crossref_primary_10_1016_j_neucom_2018_01_048 crossref_primary_10_1109_TNSE_2019_2942341 crossref_primary_10_1109_TIP_2019_2917867 crossref_primary_10_3233_JIFS_234920 crossref_primary_10_1007_s11235_022_00901_6 crossref_primary_10_1016_j_patcog_2022_108700 crossref_primary_10_1109_TCBB_2020_3002562 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1109_TNNLS_2021_3139119 crossref_primary_10_1016_j_neucom_2019_09_104 crossref_primary_10_1007_s10115_021_01586_0 crossref_primary_10_3233_JIFS_189136 crossref_primary_10_1016_j_saa_2023_122418 crossref_primary_10_1109_LGRS_2016_2568263 crossref_primary_10_1016_j_knosys_2021_107982 crossref_primary_10_1007_s11042_016_3253_1 crossref_primary_10_1016_j_engappai_2016_12_004 crossref_primary_10_1007_s10044_024_01390_w crossref_primary_10_1007_s12559_018_9555_z crossref_primary_10_1109_TETCI_2018_2868326 crossref_primary_10_1109_TIM_2021_3122742 crossref_primary_10_1109_TGRS_2022_3169216 crossref_primary_10_1016_j_neucom_2017_08_049 crossref_primary_10_1109_JPROC_2020_3004555 crossref_primary_10_1109_TII_2020_3028103 crossref_primary_10_1007_s10489_024_05706_5 crossref_primary_10_1016_j_inffus_2021_05_013 crossref_primary_10_1016_j_knosys_2016_01_021 crossref_primary_10_1016_j_knosys_2021_107066 crossref_primary_10_1016_j_neucom_2019_01_019 crossref_primary_10_1109_JSTARS_2022_3206753 crossref_primary_10_1109_TFUZZ_2020_2994979 crossref_primary_10_1109_JIOT_2024_3361253 crossref_primary_10_1109_TNNLS_2019_2935608 crossref_primary_10_1109_JAS_2023_123531 crossref_primary_10_1016_j_neucom_2021_05_041 crossref_primary_10_1016_j_ccst_2025_100374 crossref_primary_10_1016_j_eswa_2020_113238 crossref_primary_10_1109_TCSVT_2019_2942688 crossref_primary_10_1016_j_neunet_2020_01_009 crossref_primary_10_1109_TNNLS_2020_3017213 crossref_primary_10_1007_s11042_020_10193_0 crossref_primary_10_1016_j_phycom_2023_102015 crossref_primary_10_1177_16878132221135740 crossref_primary_10_1109_TCYB_2020_2980815 crossref_primary_10_1109_TCYB_2021_3070545 crossref_primary_10_1007_s11063_022_10841_6 crossref_primary_10_1155_2018_6323414 crossref_primary_10_1007_s00500_020_05105_1 crossref_primary_10_1007_s11432_024_4273_8 crossref_primary_10_1109_TCE_2024_3419788 crossref_primary_10_1109_TSC_2022_3213238 crossref_primary_10_1109_TPAMI_2025_3541207 crossref_primary_10_1109_TNNLS_2016_2538282 crossref_primary_10_3390_rs9040337 crossref_primary_10_1016_j_knosys_2022_109022 crossref_primary_10_1007_s11063_022_10828_3 crossref_primary_10_1016_j_bbe_2018_04_008 crossref_primary_10_1109_TFUZZ_2016_2633379 crossref_primary_10_1109_TMM_2017_2763322 crossref_primary_10_1109_TNSRE_2022_3229066 crossref_primary_10_1109_TAFFC_2017_2705696 crossref_primary_10_1109_TNNLS_2016_2638321 crossref_primary_10_1177_14759217221110441 crossref_primary_10_1016_j_neucom_2019_08_078 crossref_primary_10_1016_j_eswa_2019_02_005 crossref_primary_10_1109_TGRS_2020_3026387 crossref_primary_10_1109_TKDE_2024_3372462 crossref_primary_10_3390_brainsci11050603 crossref_primary_10_1016_j_ymssp_2023_110164 crossref_primary_10_1007_s00500_019_04487_1 crossref_primary_10_1016_j_cie_2020_107015 crossref_primary_10_1016_j_inffus_2022_10_026 crossref_primary_10_1088_1361_6501_ace7e6 crossref_primary_10_1016_j_jsv_2021_116245 crossref_primary_10_1016_j_neucom_2018_05_029 crossref_primary_10_1016_j_ymssp_2022_108918 crossref_primary_10_1109_ACCESS_2019_2944211 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1007_s11760_018_1405_7 crossref_primary_10_1007_s11042_022_12226_2 crossref_primary_10_1109_TIP_2022_3216781 crossref_primary_10_1109_TMM_2024_3411316 crossref_primary_10_1109_TNNLS_2022_3199619 crossref_primary_10_1007_s11063_024_11677_y crossref_primary_10_1109_TCSS_2022_3153660 crossref_primary_10_1016_j_patcog_2022_109154 crossref_primary_10_1109_ACCESS_2019_2958736 crossref_primary_10_1109_TFUZZ_2019_2958299 crossref_primary_10_3233_JIFS_191136 crossref_primary_10_1109_ACCESS_2022_3233220 crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_1016_j_bspc_2022_104435 crossref_primary_10_1016_j_patcog_2020_107658 crossref_primary_10_1016_j_patrec_2020_06_007 crossref_primary_10_1109_TMM_2022_3145235 crossref_primary_10_1109_TIE_2019_2898619 crossref_primary_10_1109_TNNLS_2022_3151683 crossref_primary_10_1177_00131644221132723 crossref_primary_10_1016_j_knosys_2023_110894 crossref_primary_10_1109_TCYB_2020_3004263 crossref_primary_10_1109_TKDE_2021_3112815 crossref_primary_10_1016_j_patrec_2019_06_007 crossref_primary_10_3390_s21103382 crossref_primary_10_1016_j_patcog_2024_110473 crossref_primary_10_3233_JIFS_190055 crossref_primary_10_1016_j_neunet_2018_02_004 crossref_primary_10_1007_s10115_016_0944_x crossref_primary_10_1016_j_phycom_2022_101973 crossref_primary_10_1016_j_ymssp_2021_108426 crossref_primary_10_1016_j_eswa_2020_114078 crossref_primary_10_1109_ACCESS_2019_2939876 crossref_primary_10_1145_3477052 crossref_primary_10_1016_j_neuroimage_2017_07_028 crossref_primary_10_1109_TCCN_2020_2964761 crossref_primary_10_1016_j_neucom_2019_01_056 crossref_primary_10_3389_fnins_2020_00496 crossref_primary_10_1109_TNSRE_2018_2850308 crossref_primary_10_1155_2020_8827657 crossref_primary_10_1109_TCBB_2019_2914103 crossref_primary_10_1016_j_neucom_2015_03_020 crossref_primary_10_1109_JSEN_2019_2939360 crossref_primary_10_1109_TCYB_2020_3004398 crossref_primary_10_1145_2903725 crossref_primary_10_1109_ACCESS_2023_3343759 crossref_primary_10_2478_amcs_2019_0045 crossref_primary_10_1016_j_knosys_2021_107158 crossref_primary_10_1109_JSEN_2019_2949057 crossref_primary_10_1007_s11063_023_11240_1 crossref_primary_10_1016_j_ins_2022_03_059 crossref_primary_10_1016_j_knosys_2019_03_021 crossref_primary_10_1109_TGRS_2023_3307434 crossref_primary_10_1109_TKDE_2023_3270118 crossref_primary_10_1109_TGRS_2021_3070050 crossref_primary_10_1109_TKDE_2020_2984212 crossref_primary_10_3390_app13031935 crossref_primary_10_1016_j_knosys_2019_03_024 crossref_primary_10_1109_TIP_2016_2631887 crossref_primary_10_1109_TKDE_2018_2843342 crossref_primary_10_1016_j_neucom_2022_09_124 crossref_primary_10_1038_srep41831 crossref_primary_10_1155_2018_8425821 crossref_primary_10_1109_TAI_2022_3196813 crossref_primary_10_1109_TKDE_2016_2554549 crossref_primary_10_1016_j_apacoust_2022_108919 crossref_primary_10_1109_TGRS_2020_3021140 crossref_primary_10_1016_j_eswa_2023_119907 crossref_primary_10_1109_TCYB_2020_2974106 crossref_primary_10_1109_TGRS_2021_3110060 crossref_primary_10_1109_TPAMI_2018_2866846 crossref_primary_10_3390_s22124470 crossref_primary_10_1016_j_patrec_2015_12_015 crossref_primary_10_1145_3502287 crossref_primary_10_1109_TASE_2018_2865663 crossref_primary_10_1016_j_engappai_2023_107498 crossref_primary_10_1109_TASE_2022_3218132 crossref_primary_10_1109_JIOT_2024_3421536 crossref_primary_10_1016_j_neucom_2015_12_125 crossref_primary_10_1002_ail2_102 crossref_primary_10_1016_j_measurement_2020_107570 crossref_primary_10_1016_j_measurement_2019_107155 crossref_primary_10_1007_s00500_022_06846_x crossref_primary_10_1007_s10489_021_02564_3 crossref_primary_10_1109_TNNLS_2021_3133760 crossref_primary_10_1109_TEVC_2023_3346406 crossref_primary_10_1109_TIE_2021_3066938 crossref_primary_10_1109_TKDE_2022_3174336 crossref_primary_10_1016_j_knosys_2023_110586 crossref_primary_10_1109_ACCESS_2022_3184685 crossref_primary_10_1186_s40644_019_0227_3 crossref_primary_10_1016_j_engappai_2023_106172 crossref_primary_10_1007_s00521_020_05513_2 crossref_primary_10_1007_s13042_021_01428_z crossref_primary_10_1002_int_22120 crossref_primary_10_1109_TIM_2022_3224521 crossref_primary_10_1109_TCYB_2020_2987632 crossref_primary_10_1016_j_neucom_2023_02_030 crossref_primary_10_1109_TKDE_2014_2373376 crossref_primary_10_1007_s00170_021_06780_6 crossref_primary_10_1109_TCSVT_2019_2900467 crossref_primary_10_1016_j_engappai_2023_107700 crossref_primary_10_1016_j_ins_2022_02_008 crossref_primary_10_1109_TKDE_2021_3060037 crossref_primary_10_1109_TIP_2018_2839528 crossref_primary_10_1109_TPAMI_2022_3146234 crossref_primary_10_1109_TMM_2024_3521731 crossref_primary_10_1007_s13198_024_02684_2 crossref_primary_10_1016_j_ymssp_2024_111327 crossref_primary_10_1007_s10489_021_02609_7 crossref_primary_10_1109_TKDE_2022_3185233 crossref_primary_10_1007_s12652_021_03426_z crossref_primary_10_1016_j_trc_2018_07_008 crossref_primary_10_1109_TIP_2020_3031220 crossref_primary_10_1109_TNNLS_2019_2957229 crossref_primary_10_1016_j_ins_2014_11_041 crossref_primary_10_1016_j_neucom_2021_12_009 crossref_primary_10_1007_s00138_020_01093_2 crossref_primary_10_1109_TGRS_2025_3592206 crossref_primary_10_1016_j_neunet_2019_02_007 crossref_primary_10_1109_TGRS_2023_3348953 crossref_primary_10_1017_dce_2025_3 crossref_primary_10_1109_TIP_2015_2462023 crossref_primary_10_1016_j_image_2021_116455 crossref_primary_10_1109_TSMC_2020_2997922 crossref_primary_10_1016_j_knosys_2019_105344 crossref_primary_10_1080_1206212X_2021_1885786 crossref_primary_10_1109_TSMC_2017_2735997 crossref_primary_10_3390_s20164367 crossref_primary_10_1007_s42044_020_00062_2 crossref_primary_10_1016_j_knosys_2021_106809 crossref_primary_10_1051_jnwpu_20234120344 crossref_primary_10_1088_1742_6596_1881_4_042059 crossref_primary_10_1109_THMS_2016_2608931 crossref_primary_10_1016_j_ymssp_2020_107142 crossref_primary_10_1016_j_engappai_2019_103267 crossref_primary_10_1007_s11063_022_10967_7 crossref_primary_10_1109_TAI_2021_3123935 crossref_primary_10_1145_3340240 crossref_primary_10_1007_s10489_021_02771_y crossref_primary_10_1007_s10489_018_1323_y crossref_primary_10_1007_s11042_023_17635_5 crossref_primary_10_1016_j_neucom_2016_05_077 crossref_primary_10_1109_TIP_2024_3418581 crossref_primary_10_1016_j_ymssp_2025_113013 crossref_primary_10_1109_TIT_2024_3441574 crossref_primary_10_1016_j_saa_2024_123991 crossref_primary_10_1109_LGRS_2019_2907139 crossref_primary_10_3390_electronics11050810 crossref_primary_10_1109_TCYB_2021_3133890 crossref_primary_10_1016_j_neucom_2019_04_025 crossref_primary_10_1007_s11760_020_01745_w crossref_primary_10_1109_TIP_2016_2612827 crossref_primary_10_1109_TKDE_2017_2669193 crossref_primary_10_1109_TMM_2024_3407696 crossref_primary_10_1016_j_knosys_2019_105233 crossref_primary_10_1109_TCSVT_2021_3087486 crossref_primary_10_3390_s19183992 crossref_primary_10_1145_3291124 crossref_primary_10_1016_j_est_2025_115947 crossref_primary_10_3390_electronics14153146 crossref_primary_10_1016_j_cropro_2024_106690 crossref_primary_10_1186_s12859_022_05128_5 crossref_primary_10_1109_TIP_2019_2929421 crossref_primary_10_1016_j_cviu_2017_06_002 crossref_primary_10_1109_JSEN_2022_3165398 crossref_primary_10_1109_TSMC_2022_3184716 crossref_primary_10_1109_TASE_2020_2998586 crossref_primary_10_1109_ACCESS_2020_2996796 crossref_primary_10_1109_JSTARS_2020_3006879 |
| Cites_doi | 10.1137/1.9781611972825.47 10.1145/1963405.1963448 10.1145/1772690.1772767 10.1109/TKDE.2009.191 10.3115/1610075.1610094 10.1109/TKDE.2011.143 10.1109/TPAMI.2010.231 10.1109/TIT.2007.911294 10.1109/ICDM.2011.92 10.1145/1401890.1401951 10.1145/1273496.1273521 10.1109/TKDE.2011.252 10.1145/1401890.1401928 10.1145/1961189.1961199 10.1109/TKDE.2009.126 10.1145/1557019.1557045 10.1109/TPAMI.2011.114 10.1145/1281192.1281218 10.1109/TKDE.2012.75 10.1145/1553374.1553454 10.1109/TNN.2010.2091281 10.1145/1645953.1646121 10.1109/TPAMI.2009.57 10.1016/j.patcog.2012.04.014 10.1145/1557019.1557130 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2013.111 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1089 |
| ExternalDocumentID | 3387986371 10_1109_TKDE_2013_111 6550016 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c285t-5f302f3d308034cd3a9a068ee2c1e90223527b1149ffb7ae97c8cd1a9bf0d5333 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 500 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337965900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Oct 05 00:13:59 EDT 2025 Sat Nov 29 04:46:36 EST 2025 Tue Nov 18 21:52:56 EST 2025 Wed Aug 27 02:52:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | manifold regularization distribution adaptation Transfer learning generalization error adaptation regularization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c285t-5f302f3d308034cd3a9a068ee2c1e90223527b1149ffb7ae97c8cd1a9bf0d5333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1549541448 |
| PQPubID | 85438 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1549541448 crossref_primary_10_1109_TKDE_2013_111 crossref_citationtrail_10_1109_TKDE_2013_111 ieee_primary_6550016 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | argyriou (ref32) 0 ref12 ref37 ref15 ref36 xiao (ref21) 0 ref30 long (ref3) 0 ben-david (ref38) 0 ref2 ref1 belkin (ref22) 2006; 7 ref39 ref17 ref16 ref19 ref18 zhu (ref6) 0 wang (ref27) 0 liu (ref33) 0 cai (ref42) 0 cai (ref41) 2011; 33 ref23 ref26 ref25 ref20 pan (ref10) 2011; 22 schölkopf (ref35) 0 yang (ref14) 0 ref28 ref29 ref8 pan (ref11) 0 ref9 ref4 jiang (ref24) 0 vapnik (ref34) 1998 ref5 ref40 daumé (ref31) 0 gretton (ref13) 0 rohrbach (ref7) 0 |
| References_xml | – year: 0 ident: ref27 article-title: Heterogeneous domain adaptation using manifold alignment publication-title: Proc 25th AAAI – ident: ref37 doi: 10.1137/1.9781611972825.47 – ident: ref8 doi: 10.1145/1963405.1963448 – ident: ref5 doi: 10.1145/1772690.1772767 – ident: ref1 doi: 10.1109/TKDE.2009.191 – ident: ref4 doi: 10.3115/1610075.1610094 – ident: ref2 doi: 10.1109/TKDE.2011.143 – year: 0 ident: ref24 article-title: Instance weighting for domain adaptation in NLP publication-title: Proc 45th ACL – year: 0 ident: ref33 article-title: Semi-supervised multitask learning publication-title: Proc Adv NIPS – volume: 33 start-page: 1548 year: 2011 ident: ref41 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – ident: ref39 doi: 10.1109/TIT.2007.911294 – ident: ref20 doi: 10.1109/ICDM.2011.92 – year: 1998 ident: ref34 publication-title: Statistical Learning Theory – ident: ref26 doi: 10.1145/1401890.1401951 – year: 0 ident: ref13 article-title: A kernel method for the two-sample problem publication-title: Proc NIPS – ident: ref23 doi: 10.1145/1273496.1273521 – ident: ref28 doi: 10.1109/TKDE.2011.252 – year: 0 ident: ref21 article-title: Semi-supervised kernel matching for domain adaptation publication-title: Proc 26th AAAI – ident: ref40 doi: 10.1145/1401890.1401928 – ident: ref36 doi: 10.1145/1961189.1961199 – year: 0 ident: ref14 article-title: Cross-domain video concept detection using adaptive svms publication-title: Proc 15th ACM MM – year: 0 ident: ref31 article-title: Co-regularization based semi-supervised domain adaptation publication-title: Proc Adv NIPS – ident: ref12 doi: 10.1109/TKDE.2009.126 – volume: 7 start-page: 2399 year: 2006 ident: ref22 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – year: 0 ident: ref3 article-title: Transfer learning with graph co-regularization publication-title: Proc 26th AAAI – ident: ref30 doi: 10.1145/1557019.1557045 – ident: ref17 doi: 10.1109/TPAMI.2011.114 – year: 0 ident: ref38 article-title: Analysis of representations for domain adaptation publication-title: Proc Adv NIPS – ident: ref25 doi: 10.1145/1281192.1281218 – ident: ref29 doi: 10.1109/TKDE.2012.75 – year: 0 ident: ref11 article-title: Transfer learning via dimensionality reduction publication-title: Proc of the 22nd AAAI – year: 0 ident: ref6 article-title: Heterogeneous transfer learning for image classification publication-title: Proc 25th AAAI – ident: ref9 doi: 10.1145/1553374.1553454 – year: 0 ident: ref42 article-title: Spectral regression: A unified approach for sparse subspace learning publication-title: Proc IEEE ICDM – year: 0 ident: ref32 article-title: Multi-task feature learning publication-title: Proc NIPS – year: 0 ident: ref7 article-title: What helps where-And why? Semantic relatedness for knowledge transfer publication-title: Proc 23rd IEEE Conf CVPR – volume: 22 start-page: 199 year: 2011 ident: ref10 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2091281 – ident: ref15 doi: 10.1145/1645953.1646121 – ident: ref19 doi: 10.1109/TPAMI.2009.57 – ident: ref16 doi: 10.1016/j.patcog.2012.04.014 – year: 0 ident: ref35 article-title: A generalized representer theorem publication-title: Proc 14th Annu Conf COLT – ident: ref18 doi: 10.1145/1557019.1557130 |
| SSID | ssj0008781 |
| Score | 2.6105282 |
| Snippet | Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1076 |
| SubjectTerms | Artificial Intelligence Classifier design and evaluation Computing Methodologies Database Applications Database Management Design Methodology Feature extraction Information Technology and Systems Joints Kernel Knowledge acquisition Learning Manifolds Mining methods and algorithms Modeling structured Pattern Recognition Probability distribution Risk management textual and multimedia data |
| Title | Adaptation Regularization: A General Framework for Transfer Learning |
| URI | https://ieeexplore.ieee.org/document/6550016 https://www.proquest.com/docview/1549541448 |
| Volume | 26 |
| WOSCitedRecordID | wos000337965900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8aAHUdCIounBeGJloWW79UYUYqIhxqDhtum2XWNigPDh73fa7aJGPXjbQ7fZdDqdN9uZ9wDOVahFJhkLuBIiQHyLLsVNFsTMRNKg-6VOY-n5no9G8WQiHkrQ2vTCGGNc8Zm5tI_uLl_P1Nr-KmtHCKcRopShzHmU92ptTt2YO0FSzC4wJ6KMf_Jptsd3NwNbxEXt-fAt_jhBlR-nsAstw-r_PmoPdj2EJP3c5vtQMtMaVAt5BuK9tQY7X7gG63DT13Ke37uTRydAv_AtmFekTzz7NBkWtVoEwSxxgSzDOT0L68sBPA0H4-vbwEsoBKob91ZBL6NhN6OaIjCkTGkqhQyj2Jiu6hiB8RvxF08xJxJZlnJpBFex0h0p0izUiATpIVSms6k5AsJSzg1OwNCyLFUyVT2BcY9pjRAm7agGtIqFTZTnF7cyF2-JyzNCkVg7JNYONu1owMVm-Dwn1vhrYN0u-maQX-8GNAurJd7tlonlm7O65iw-_v2tE9jGeVlesdiEymqxNqewpd5Xr8vFmdtRH6qLyMo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEPoqARRe3BeGIyWKGrNyIQDEiMQcNt2drOmBgg_PDv97XrpkY9eNuh65a-vb7vre99H8ClcCWPQ0odJjh3EN-iSzEVOz5VrVCh-0VGY-l5yEYjfzLhDzmoZr0wSilTfKau9aU5y5czsda_ymothNMIUTZgUytn2W6tbN_1mZEkxfwCsyKPsk9Gzdp40OnqMi5P7xDfIpCRVPmxD5vg0iv877X2Yc-CSNJOrH4AOTUtQiEVaCDWX4uw-4VtsASdtgznyck7eTQS9AvbhHlD2sTyT5NeWq1FEM4SE8pinNPysL4cwlOvO77tO1ZEwRENv7lymrHnNmJPeggNPSqkF_LQbflKNURdcYzgiMBYhFkRj-OIhYoz4QtZD3kUuxKxoHcE-elsqo6B0IgxhRNQtC2NRBiJJsfIR6VEEBPVRRmq6cIGwjKMa6GLt8BkGi4PtB0CbQedeJThKhs-T6g1_hpY0oueDbLrXYZKarXAOt4y0IxzWtmc-ie_33UB2_3x_TAY3o0Gp7CDz6BJ_WIF8qvFWp3BlnhfvS4X5-br-gBLW8wT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+Regularization%3A+A+General+Framework+for+Transfer+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Long%2C+Mingsheng&rft.au=Wang%2C+Jianmin&rft.au=Ding%2C+Guiguang&rft.au=Pan%2C+Sinno+Jialin&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=26&rft.issue=5&rft.spage=1076&rft_id=info:doi/10.1109%2FTKDE.2013.111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3387986371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |