Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification
ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature...
Uloženo v:
| Vydáno v: | Transactions on emerging telecommunications technologies Ročník 36; číslo 9 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
01.09.2025
|
| Témata: | |
| ISSN: | 2161-3915, 2161-3915 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset.
To resolve the data imbalance issues, the Euclidean‐based synthetic minority oversampling technique (EbSmoT) is utilized in the preprocessing stage.
To eliminate the redundant features, the Information Gain and Fisher score based technique (IG‐FST) neglects the overfitting issues while training.
To obtain the higher level feature representation, a Bi‐LSTM ResNet based convolutional auto encoder (BR‐CAE) network is used.
To detect and classify the anomaly in IIoT, the stacked parse Autoencoder Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used. |
|---|---|
| AbstractList | ABSTRACT
In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset.
To resolve the data imbalance issues, the Euclidean‐based synthetic minority oversampling technique (EbSmoT) is utilized in the preprocessing stage.
To eliminate the redundant features, the Information Gain and Fisher score based technique (IG‐FST) neglects the overfitting issues while training.
To obtain the higher level feature representation, a Bi‐LSTM ResNet based convolutional auto encoder (BR‐CAE) network is used.
To detect and classify the anomaly in IIoT, the stacked parse Autoencoder Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used. In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset. |
| Author | Kesavan, M. Senthil Kumar, C. Abdullah, Azween Bin Vijay Anand, R. Brahmam, Madala Guru Magesh, G. Alagiri, I. |
| Author_xml | – sequence: 1 givenname: R. surname: Vijay Anand fullname: Vijay Anand, R. email: vijayanand.r@vit.ac.in organization: Vellore Institute of Technology – sequence: 2 givenname: G. surname: Magesh fullname: Magesh, G. organization: Vellore Institute of Technology – sequence: 3 givenname: I. surname: Alagiri fullname: Alagiri, I. organization: Vellore Institute of Technology – sequence: 4 givenname: Madala Guru surname: Brahmam fullname: Brahmam, Madala Guru organization: VIT‐AP University, Amaravati – sequence: 5 givenname: C. surname: Senthil Kumar fullname: Senthil Kumar, C. organization: Vellore Institute of Technology – sequence: 6 givenname: M. surname: Kesavan fullname: Kesavan, M. organization: Comcast – sequence: 7 givenname: Azween Bin surname: Abdullah fullname: Abdullah, Azween Bin organization: Pedana University |
| BookMark | eNp1UMtOwzAQtFCRKKUH_sBXDmn9SOL0WEILlSpxIJyjbbJpDcGpbEcoX8Bv41IOXNjL7M7OzGGuych0Bgm55WzGGRNz9H6mmBDxBRkLnvJILngy-rNfkalzbyyMSkQSZ2PytTF177zV0NKN8WgNeto1tDhos3c0H3Zow2ERvKMP6LHyujMnpuv3h8Dgka7Ds7dItwjWBBsFU9MXD9U7BjyCdUiXve_QVF0d4u7BhUfegnO60RWcEm_IZQOtw-kvTsjrelXkT9H2-XGTL7dRJbIkjrhCIUQTM5nIBXIOos5SgEBgJlOUUDd8V2WNypjMUiVqpRAE8lhx4Eru5ITcnXMr2zlnsSmPVn-AHUrOylOJZSix_CkxaOdn7aducfhfWK6K4uz4BtZGdsQ |
| Cites_doi | 10.1007/s00521-020-05189-8 10.1016/j.compeleceng.2019.106522 10.1109/UCET51115.2020.9205361 10.1080/19393555.2020.1767240 10.1145/3133956.3134015 10.3390/electronics10040407 10.1109/ACCESS.2020.2992249 10.1007/s00170-022-10259-3 10.1109/ACCESS.2020.2994079 10.1007/s11042-020-10354-1 10.1016/j.cose.2020.101752 10.1016/j.dcan.2022.09.008 10.1145/3336191.3371876 10.1155/2021/9485654 10.1109/WCNC45663.2020.9120761 10.1007/s00521-021-05924-9 10.1109/TII.2019.2952917 10.1109/JIOT.2020.3011726 10.1109/JIOT.2019.2912022 10.1016/j.measurement.2019.107450 10.1016/j.scs.2021.102994 10.1016/j.knosys.2023.110941 10.32604/csse.2023.026712 10.1016/bs.adcom.2019.10.007 10.1016/j.procs.2020.03.367 10.1109/ACCESS.2021.3094024 10.1155/2021/7154587 10.1155/2020/8897926 10.1109/JIOT.2021.3074382 10.1051/e3sconf/202017002007 10.1109/ACCESS.2021.3071766 10.1109/TII.2020.3022432 10.1109/ICPS48405.2020.9274780 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ett.70224 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2161-3915 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ett_70224 ETT70224 |
| Genre | researchArticle |
| GroupedDBID | .GA .Y3 05W 1OB 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAYXX CITATION |
| ID | FETCH-LOGICAL-c2854-17e222f403539e11a2d86aaf40e836e3adf1bc8f78038672d77ea2e1471a173b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570005400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-3915 |
| IngestDate | Sat Nov 29 07:27:58 EST 2025 Wed Sep 17 09:20:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2854-17e222f403539e11a2d86aaf40e836e3adf1bc8f78038672d77ea2e1471a173b3 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1002_ett_70224 wiley_primary_10_1002_ett_70224_ETT70224 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Transactions on emerging telecommunications technologies |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | 2021; 9 2019; 8 2019; 6 2020; 81 2023; 9 2020; 17 2019; 16 2020; 167 2020; 32 2021; 72 2020; 8 2022; 123 2021; 10 2020; 2020 2023; 44 2021; 33 2020; 154 2020 2020; 170 2020; 92 2020; 117 2017 2023; 279 2021; 2021 2021; 80 2020; 29 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 Wang C. (e_1_2_8_16_1) 2020; 2020 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 Meftah S. (e_1_2_8_27_1) 2019; 8 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 9 start-page: 103906 year: 2021 end-page: 103926 article-title: Design and Development of a Deep Learning‐Based Model for Anomaly Detection in IoT Networks publication-title: IEEE Access – volume: 9 start-page: 7110 issue: 10 year: 2021 end-page: 7119 article-title: Toward Accurate Anomaly Detection in Industrial Internet of Things Using Hierarchical Federated Learning publication-title: IEEE Internet of Things Journal – volume: 72 year: 2021 article-title: A New Distributed Architecture for Evaluating AI‐Based Security Systems at the Edge: Network TON_IoT Datasets publication-title: Sustainable Cities and Society – volume: 92 year: 2020 article-title: A Deep Learning Method With Wrapper Based Feature Extraction for Wireless Intrusion Detection System publication-title: Computers & Security – volume: 29 start-page: 267 issue: 6 year: 2020 end-page: 283 article-title: Network Intrusion Detection Based on Deep Learning Model Optimized With Rule‐Based Hybrid Feature Selection publication-title: Information Security Journal: A Global Perspective – volume: 44 start-page: 2361 issue: 3 year: 2023 end-page: 2378 article-title: Anomaly Detection for Industrial Internet of Things Cyberattacks publication-title: Computer Systems Science and Engineering – volume: 2020 start-page: 1 year: 2020 end-page: 10 article-title: Anomaly Detection for Industrial Control System Based on Autoencoder Neural Network publication-title: Wireless Communications and Mobile Computing – start-page: 1285 year: 2017 end-page: 1298 – volume: 8 start-page: 478 issue: 5 year: 2019 end-page: 487 article-title: Network Based Intrusion Detection Using the UNSW‐NB15 Dataset publication-title: International Journal of Computing and Digital Systems – volume: 80 start-page: 12619 year: 2021 end-page: 12640 article-title: Anomaly Events Classification and Detection System in Critical Industrial Internet of Things Infrastructure Using Machine Learning Algorithms publication-title: Multimedia Tools and Applications – volume: 8 start-page: 6348 issue: 8 year: 2020 end-page: 6358 article-title: Deep Anomaly Detection for Time‐Series Data in Industrial IoT: A Communication‐Efficient On‐Device Federated Learning Approach publication-title: IEEE Internet of Things Journal – volume: 17 start-page: 3469 issue: 5 year: 2020 end-page: 3477 article-title: Variational LSTM Enhanced Anomaly Detection for Industrial Big Data publication-title: IEEE Transactions on Industrial Informatics – volume: 2021 start-page: 1 year: 2021 end-page: 9 article-title: Sensors Anomaly Detection of Industrial Internet of Things Based on Isolated Forest Algorithm and Data Compression publication-title: Scientific Programming – volume: 170 year: 2020 article-title: Anomaly Detection for Predictive Maintenance in Industry 4.0‐A Survey publication-title: E3S Web of Conferences – volume: 16 start-page: 5244 issue: 8 year: 2019 end-page: 5253 article-title: LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT publication-title: IEEE Transactions on Industrial Informatics – volume: 81 year: 2020 article-title: Industrial Internet of Things: Recent Advances, Enabling Technologies and Open Challenges publication-title: Computers and Electrical Engineering – volume: 167 start-page: 1561 year: 2020 end-page: 1573 article-title: Analysis of KDD‐Cup'99, NSL‐KDD and UNSW‐NB15 Datasets Using Deep Learning in IoT publication-title: Procedia Computer Science – volume: 279 year: 2023 article-title: A Stacking Ensemble of Deep Learning Models for IoT Intrusion Detection publication-title: Knowledge‐Based Systems – start-page: 894 year: 2020 end-page: 896 – volume: 8 start-page: 89337 year: 2020 end-page: 89350 article-title: A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight Random Neural Network publication-title: IEEE Access – volume: 2021 start-page: 1 year: 2021 end-page: 17 article-title: Intrusion Detection in Industrial Internet of Things Network‐Based on Deep Learning Model With Rule‐Based Feature Selection publication-title: Wireless Communications and Mobile Computing – start-page: 250 year: 2020 end-page: 256 – volume: 123 start-page: 2017 issue: 5–6 year: 2022 end-page: 2029 article-title: A Novel Fully Convolutional Neural Network Approach for Detection and Classification of Attacks on Industrial IoT Devices in Smart Manufacturing Systems publication-title: International Journal of Advanced Manufacturing Technology – volume: 32 start-page: 17361 year: 2020 end-page: 17378 article-title: Anomaly Detection via Blockchained Deep Learning Smart Contracts in Industry 4.0 publication-title: Neural Computing and Applications – volume: 117 start-page: 321 issue: 1 year: 2020 end-page: 338 article-title: Machine Learning and Deep Learning Algorithms on the Industrial Internet of Things (IIoT) publication-title: Advances in Computers – volume: 8 start-page: 83965 year: 2020 end-page: 83973 article-title: An Ensemble Deep Learning‐Based Cyber‐Attack Detection in Industrial Control System publication-title: IEEE Access – volume: 9 start-page: 55595 year: 2021 end-page: 55605 article-title: A Hybrid Deep Random Neural Network for Cyberattack Detection in the Industrial Internet of Things publication-title: IEEE Access – volume: 9 start-page: 101 issue: 1 year: 2023 end-page: 110 article-title: An Ensemble Deep Learning Model for Cyber Threat Hunting in Industrial Internet of Things publication-title: Digital Communications and Networks – volume: 154 year: 2020 article-title: Robust Detection for Network Intrusion of Industrial IoT Based on Multi‐CNN Fusion publication-title: Measurement – start-page: 1 year: 2020 end-page: 6 – volume: 6 start-page: 6822 issue: 4 year: 2019 end-page: 6834 article-title: Machine Learning‐Based Network Vulnerability Analysis of Industrial Internet of Things publication-title: IEEE Internet of Things Journal – volume: 33 start-page: 12073 year: 2021 end-page: 12085 article-title: One‐Class Graph Neural Networks for Anomaly Detection in Attributed Networks publication-title: Neural Computing and Applications – start-page: 1 year: 2020 end-page: 4 – volume: 10 issue: 4 year: 2021 article-title: A Machine Learning Approach for Anomaly Detection in Industrial Control Systems Based on Measurement Data publication-title: Electronics – ident: e_1_2_8_20_1 doi: 10.1007/s00521-020-05189-8 – ident: e_1_2_8_5_1 doi: 10.1016/j.compeleceng.2019.106522 – ident: e_1_2_8_26_1 doi: 10.1109/UCET51115.2020.9205361 – ident: e_1_2_8_30_1 doi: 10.1080/19393555.2020.1767240 – ident: e_1_2_8_9_1 doi: 10.1145/3133956.3134015 – ident: e_1_2_8_14_1 doi: 10.3390/electronics10040407 – ident: e_1_2_8_17_1 doi: 10.1109/ACCESS.2020.2992249 – ident: e_1_2_8_34_1 doi: 10.1007/s00170-022-10259-3 – ident: e_1_2_8_12_1 doi: 10.1109/ACCESS.2020.2994079 – ident: e_1_2_8_4_1 doi: 10.1007/s11042-020-10354-1 – ident: e_1_2_8_31_1 doi: 10.1016/j.cose.2020.101752 – ident: e_1_2_8_18_1 doi: 10.1016/j.dcan.2022.09.008 – ident: e_1_2_8_8_1 doi: 10.1145/3336191.3371876 – ident: e_1_2_8_23_1 doi: 10.1155/2021/9485654 – ident: e_1_2_8_33_1 doi: 10.1109/WCNC45663.2020.9120761 – ident: e_1_2_8_19_1 doi: 10.1007/s00521-021-05924-9 – ident: e_1_2_8_24_1 doi: 10.1109/TII.2019.2952917 – ident: e_1_2_8_22_1 doi: 10.1109/JIOT.2020.3011726 – ident: e_1_2_8_3_1 doi: 10.1109/JIOT.2019.2912022 – ident: e_1_2_8_6_1 doi: 10.1016/j.measurement.2019.107450 – volume: 8 start-page: 478 issue: 5 year: 2019 ident: e_1_2_8_27_1 article-title: Network Based Intrusion Detection Using the UNSW‐NB15 Dataset publication-title: International Journal of Computing and Digital Systems – ident: e_1_2_8_28_1 doi: 10.1016/j.scs.2021.102994 – ident: e_1_2_8_29_1 doi: 10.1016/j.knosys.2023.110941 – ident: e_1_2_8_35_1 doi: 10.32604/csse.2023.026712 – ident: e_1_2_8_10_1 doi: 10.1016/bs.adcom.2019.10.007 – ident: e_1_2_8_32_1 doi: 10.1016/j.procs.2020.03.367 – ident: e_1_2_8_2_1 doi: 10.1109/ACCESS.2021.3094024 – ident: e_1_2_8_25_1 doi: 10.1155/2021/7154587 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_8_16_1 article-title: Anomaly Detection for Industrial Control System Based on Autoencoder Neural Network publication-title: Wireless Communications and Mobile Computing doi: 10.1155/2020/8897926 – ident: e_1_2_8_7_1 doi: 10.1109/JIOT.2021.3074382 – ident: e_1_2_8_15_1 doi: 10.1051/e3sconf/202017002007 – ident: e_1_2_8_21_1 doi: 10.1109/ACCESS.2021.3071766 – ident: e_1_2_8_11_1 doi: 10.1109/TII.2020.3022432 – ident: e_1_2_8_13_1 doi: 10.1109/ICPS48405.2020.9274780 |
| SSID | ssj0000752548 |
| Score | 2.3246658 |
| Snippet | ABSTRACT
In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process... In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | anomaly detection bi‐directional LSTM deep learning industrial internet of things particle swarm optimization probabilistic neural network sparse autoencoder |
| Title | Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.70224 |
| Volume | 36 |
| WOSCitedRecordID | wos001570005400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2161-3915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000752548 issn: 2161-3915 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9z86AHv8X5RRAPXuqaZm1aPE234WEMkQ12K0nzKl660XWCf4H_ti9p9-FBEDy1faShpEl-7z3yfj9Cbn0VCc0D5Ri2fafNIXDCSCdO4EuDMImbguWZHYjhMJxMopcaeVjWwpT8EKuEm1kZdr82C1yqeWtNGgpFcS8MAm2Rhimqwsir0X3tjwerFAuiIYY_VpOOmSxLxPwlt5DrtVbv_0CkTQ_VQkx__18fd0D2Ks-SdsqpcEhqkB2R3Q2-wWPytRbqoGUqEAo6TWkp3kmfPhXk-GD8yDntQmGPaWXGYrR80AIzanzGRQ60ImZ9ozLTFF1W3A3wOsM4GWhnUUwNQabG7h4RJjW12pvmVJKdCCdk3O-Nnp6dSonBSUyFpcMEoB-Rtl3u8wgYk54OAynRACEPgEudMpWEqQhdHgbC00KA9IAh8kkmuOKnpJ5NMzgjFLvDTUMqz7D2QFsrJkJgmkVSBDJNZZPcLP9GPCsJN-KSWtmLcVRjO6pNcmdH__cWcW80sjfnf296QXY8o-5rT5BdknqRL-CKbCcfxfs8v65m1zebMtPM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTVAfvIvzGsQHX-qaZmtS8GXuwsQ5RDbYW0mbU_GlG1sn-Av82ybpLvogCD61PaShnJ7kOzkk3wdwXYsCrpgfOYZt36ky9B0RqNjxa9IgTOwmaHlmu7zXE8Nh8FyAu8VZmJwfYllwMyPDztdmgJuCdGXFGopZdssNBK1BqeozLopQar60B91ljUXDoV7_WFE6asosAa0tyIVcr7J8_wckfU9RLca0d_73dbuwPc8tST0Phj0oYLoPW98YBw_gcyXVQfJiIGZklJBcvpM0PiKc6AeTSU5JEzO7USs1FqPmoy04JiZrnE2QzKlZX4lMFdFJq54P9HWsV8pI6rNsZCgyle7uXgOlIlZ90-xLsqFwCIN2q9_oOHMtBic2ZywdylFnEknVZTUWIKXSU8KXUhtQMB-ZVAmNYpFw4TLhc09xjtJDqrFPUs4idgTFdJTiMRDdnZ42ZOQZ3h6sqohygVTRQHJfJoksw9Xid4TjnHIjzMmVvVB7NbReLcONdf_vLcJWv29vTv7e9BI2Ov2nbth96D2ewqZntH7tfrIzKGaTGZ7DevyevU0nF_NQ-wJPfte8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTUQfvIvzGsQHX-qapm1a8GXuguIYQzbYW0mbU_GlG1sn-Av82ybpbj4Igk9tD2kopyf5Tg7J9wHcenHIJfNjS7PtWy5D3wpCmVi-JzTCJHaKhme2w7vdYDgMeyV4WJyFKfghlgU3PTLMfK0HOI5lWluxhmKe33MNQRtQcb3Qc8tQab62B51ljUXBoVr_GFE6qsssIfUW5EK2U1u-_wOS1lNUgzHtvf993T7sznNLUi-C4QBKmB3Czhrj4BF8raQ6SFEMxJyMUlLId5LGZ4wT9aAzySlpYm42amXaotV8lAXHRGeNswmSOTXrGxGZJCppVfOBuo7VShlJfZaPNEWmVN09KqCUxKhv6n1JJhSOYdBu9RtP1lyLwUr0GUuLclSZROrazGMhUiocGfhCKAMGzEcmZErjJEh5YLPA547kHIWDVGGfoJzF7ATK2SjDUyCqOzVtiNjRvD3oypjyAKmkoeC-SFNRhZvF74jGBeVGVJArO5HyamS8WoU74_7fW0Stft_cnP296TVs9ZrtqPPcfTmHbUdL_ZrtZBdQziczvITN5CN_n06u5pH2DRXP1zc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+Internet+of+Things+Cyber+Threats+Detection+Through+Deep+Feature+Learning+and+Stacked+Sparse+Autoencoder+Based+Classification&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Vijay+Anand%2C+R.&rft.au=Magesh%2C+G.&rft.au=Alagiri%2C+I.&rft.au=Brahmam%2C+Madala+Guru&rft.date=2025-09-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1002%2Fett.70224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_70224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |