Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification

ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transactions on emerging telecommunications technologies Ročník 36; číslo 9
Hlavní autoři: Vijay Anand, R., Magesh, G., Alagiri, I., Brahmam, Madala Guru, Senthil Kumar, C., Kesavan, M., Abdullah, Azween Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.09.2025
Témata:
ISSN:2161-3915, 2161-3915
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset. To resolve the data imbalance issues, the Euclidean‐based synthetic minority oversampling technique (EbSmoT) is utilized in the preprocessing stage. To eliminate the redundant features, the Information Gain and Fisher score based technique (IG‐FST) neglects the overfitting issues while training. To obtain the higher level feature representation, a Bi‐LSTM ResNet based convolutional auto encoder (BR‐CAE) network is used. To detect and classify the anomaly in IIoT, the stacked parse Autoencoder Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used.
AbstractList ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset. To resolve the data imbalance issues, the Euclidean‐based synthetic minority oversampling technique (EbSmoT) is utilized in the preprocessing stage. To eliminate the redundant features, the Information Gain and Fisher score based technique (IG‐FST) neglects the overfitting issues while training. To obtain the higher level feature representation, a Bi‐LSTM ResNet based convolutional auto encoder (BR‐CAE) network is used. To detect and classify the anomaly in IIoT, the stacked parse Autoencoder Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used.
In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure worker safety. Security is a major concern in the industrial Internet of Things (IIoT) environment owing to the distributed nature of architecture and dynamic traffic flows. Generally, the cyber‐attack detection model is classified as misuse and anomaly detection. The misuse detection method is employed based on the concept of signature matching, and the anomaly method is based on the detection of known and unknown attacks. Present security models have realized the issue of over‐fitting, low classification accuracy, and a high false positive rate when given a massive volume of network traffic data. The proposed work focused on “IIoT cyber‐attack detection using lightweight hybrid deep learning algorithm” to identify intrusion. At first, the data imbalance problem is resolved through the Euclidean‐based synthetic minority oversampling technique (EbSmoT) to prevent the model from becoming biased toward one class. Then, the Information Gain and Fisher score‐based technique (IG‐FST) is employed to eliminate redundant features and avoid overfitting problems during training. Moreover, the Bi‐LSTM ResNet‐based convolutional autoencoder (BR‐CAE) is executed to obtain higher‐level feature representation. Finally, a Stacked Sparse autoencoder‐based Particle Swarm Probabilistic Neural Network (SAE‐PSPNN) is used for attack detection and classification. The performance of the proposed method can be evaluated using several performance metrics through two different datasets, such as the UNSW‐NB15 dataset and the ToN_IoT dataset. The proposed framework achieved an accuracy of 99.86% on the ToN_IoT dataset and 99.62% on the UNSW‐NB15 dataset.
Author Kesavan, M.
Senthil Kumar, C.
Abdullah, Azween Bin
Vijay Anand, R.
Brahmam, Madala Guru
Magesh, G.
Alagiri, I.
Author_xml – sequence: 1
  givenname: R.
  surname: Vijay Anand
  fullname: Vijay Anand, R.
  email: vijayanand.r@vit.ac.in
  organization: Vellore Institute of Technology
– sequence: 2
  givenname: G.
  surname: Magesh
  fullname: Magesh, G.
  organization: Vellore Institute of Technology
– sequence: 3
  givenname: I.
  surname: Alagiri
  fullname: Alagiri, I.
  organization: Vellore Institute of Technology
– sequence: 4
  givenname: Madala Guru
  surname: Brahmam
  fullname: Brahmam, Madala Guru
  organization: VIT‐AP University, Amaravati
– sequence: 5
  givenname: C.
  surname: Senthil Kumar
  fullname: Senthil Kumar, C.
  organization: Vellore Institute of Technology
– sequence: 6
  givenname: M.
  surname: Kesavan
  fullname: Kesavan, M.
  organization: Comcast
– sequence: 7
  givenname: Azween Bin
  surname: Abdullah
  fullname: Abdullah, Azween Bin
  organization: Pedana University
BookMark eNp1UMtOwzAQtFCRKKUH_sBXDmn9SOL0WEILlSpxIJyjbbJpDcGpbEcoX8Bv41IOXNjL7M7OzGGuych0Bgm55WzGGRNz9H6mmBDxBRkLnvJILngy-rNfkalzbyyMSkQSZ2PytTF177zV0NKN8WgNeto1tDhos3c0H3Zow2ERvKMP6LHyujMnpuv3h8Dgka7Ds7dItwjWBBsFU9MXD9U7BjyCdUiXve_QVF0d4u7BhUfegnO60RWcEm_IZQOtw-kvTsjrelXkT9H2-XGTL7dRJbIkjrhCIUQTM5nIBXIOos5SgEBgJlOUUDd8V2WNypjMUiVqpRAE8lhx4Eru5ITcnXMr2zlnsSmPVn-AHUrOylOJZSix_CkxaOdn7aducfhfWK6K4uz4BtZGdsQ
Cites_doi 10.1007/s00521-020-05189-8
10.1016/j.compeleceng.2019.106522
10.1109/UCET51115.2020.9205361
10.1080/19393555.2020.1767240
10.1145/3133956.3134015
10.3390/electronics10040407
10.1109/ACCESS.2020.2992249
10.1007/s00170-022-10259-3
10.1109/ACCESS.2020.2994079
10.1007/s11042-020-10354-1
10.1016/j.cose.2020.101752
10.1016/j.dcan.2022.09.008
10.1145/3336191.3371876
10.1155/2021/9485654
10.1109/WCNC45663.2020.9120761
10.1007/s00521-021-05924-9
10.1109/TII.2019.2952917
10.1109/JIOT.2020.3011726
10.1109/JIOT.2019.2912022
10.1016/j.measurement.2019.107450
10.1016/j.scs.2021.102994
10.1016/j.knosys.2023.110941
10.32604/csse.2023.026712
10.1016/bs.adcom.2019.10.007
10.1016/j.procs.2020.03.367
10.1109/ACCESS.2021.3094024
10.1155/2021/7154587
10.1155/2020/8897926
10.1109/JIOT.2021.3074382
10.1051/e3sconf/202017002007
10.1109/ACCESS.2021.3071766
10.1109/TII.2020.3022432
10.1109/ICPS48405.2020.9274780
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.70224
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_70224
ETT70224
Genre researchArticle
GroupedDBID .GA
.Y3
05W
1OB
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
CITATION
ID FETCH-LOGICAL-c2854-17e222f403539e11a2d86aaf40e836e3adf1bc8f78038672d77ea2e1471a173b3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570005400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-3915
IngestDate Sat Nov 29 07:27:58 EST 2025
Wed Sep 17 09:20:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2854-17e222f403539e11a2d86aaf40e836e3adf1bc8f78038672d77ea2e1471a173b3
PageCount 15
ParticipantIDs crossref_primary_10_1002_ett_70224
wiley_primary_10_1002_ett_70224_ETT70224
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2025
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2021; 9
2019; 8
2019; 6
2020; 81
2023; 9
2020; 17
2019; 16
2020; 167
2020; 32
2021; 72
2020; 8
2022; 123
2021; 10
2020; 2020
2023; 44
2021; 33
2020; 154
2020
2020; 170
2020; 92
2020; 117
2017
2023; 279
2021; 2021
2021; 80
2020; 29
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
Wang C. (e_1_2_8_16_1) 2020; 2020
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Meftah S. (e_1_2_8_27_1) 2019; 8
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 9
  start-page: 103906
  year: 2021
  end-page: 103926
  article-title: Design and Development of a Deep Learning‐Based Model for Anomaly Detection in IoT Networks
  publication-title: IEEE Access
– volume: 9
  start-page: 7110
  issue: 10
  year: 2021
  end-page: 7119
  article-title: Toward Accurate Anomaly Detection in Industrial Internet of Things Using Hierarchical Federated Learning
  publication-title: IEEE Internet of Things Journal
– volume: 72
  year: 2021
  article-title: A New Distributed Architecture for Evaluating AI‐Based Security Systems at the Edge: Network TON_IoT Datasets
  publication-title: Sustainable Cities and Society
– volume: 92
  year: 2020
  article-title: A Deep Learning Method With Wrapper Based Feature Extraction for Wireless Intrusion Detection System
  publication-title: Computers & Security
– volume: 29
  start-page: 267
  issue: 6
  year: 2020
  end-page: 283
  article-title: Network Intrusion Detection Based on Deep Learning Model Optimized With Rule‐Based Hybrid Feature Selection
  publication-title: Information Security Journal: A Global Perspective
– volume: 44
  start-page: 2361
  issue: 3
  year: 2023
  end-page: 2378
  article-title: Anomaly Detection for Industrial Internet of Things Cyberattacks
  publication-title: Computer Systems Science and Engineering
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Anomaly Detection for Industrial Control System Based on Autoencoder Neural Network
  publication-title: Wireless Communications and Mobile Computing
– start-page: 1285
  year: 2017
  end-page: 1298
– volume: 8
  start-page: 478
  issue: 5
  year: 2019
  end-page: 487
  article-title: Network Based Intrusion Detection Using the UNSW‐NB15 Dataset
  publication-title: International Journal of Computing and Digital Systems
– volume: 80
  start-page: 12619
  year: 2021
  end-page: 12640
  article-title: Anomaly Events Classification and Detection System in Critical Industrial Internet of Things Infrastructure Using Machine Learning Algorithms
  publication-title: Multimedia Tools and Applications
– volume: 8
  start-page: 6348
  issue: 8
  year: 2020
  end-page: 6358
  article-title: Deep Anomaly Detection for Time‐Series Data in Industrial IoT: A Communication‐Efficient On‐Device Federated Learning Approach
  publication-title: IEEE Internet of Things Journal
– volume: 17
  start-page: 3469
  issue: 5
  year: 2020
  end-page: 3477
  article-title: Variational LSTM Enhanced Anomaly Detection for Industrial Big Data
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Sensors Anomaly Detection of Industrial Internet of Things Based on Isolated Forest Algorithm and Data Compression
  publication-title: Scientific Programming
– volume: 170
  year: 2020
  article-title: Anomaly Detection for Predictive Maintenance in Industry 4.0‐A Survey
  publication-title: E3S Web of Conferences
– volume: 16
  start-page: 5244
  issue: 8
  year: 2019
  end-page: 5253
  article-title: LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 81
  year: 2020
  article-title: Industrial Internet of Things: Recent Advances, Enabling Technologies and Open Challenges
  publication-title: Computers and Electrical Engineering
– volume: 167
  start-page: 1561
  year: 2020
  end-page: 1573
  article-title: Analysis of KDD‐Cup'99, NSL‐KDD and UNSW‐NB15 Datasets Using Deep Learning in IoT
  publication-title: Procedia Computer Science
– volume: 279
  year: 2023
  article-title: A Stacking Ensemble of Deep Learning Models for IoT Intrusion Detection
  publication-title: Knowledge‐Based Systems
– start-page: 894
  year: 2020
  end-page: 896
– volume: 8
  start-page: 89337
  year: 2020
  end-page: 89350
  article-title: A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight Random Neural Network
  publication-title: IEEE Access
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 17
  article-title: Intrusion Detection in Industrial Internet of Things Network‐Based on Deep Learning Model With Rule‐Based Feature Selection
  publication-title: Wireless Communications and Mobile Computing
– start-page: 250
  year: 2020
  end-page: 256
– volume: 123
  start-page: 2017
  issue: 5–6
  year: 2022
  end-page: 2029
  article-title: A Novel Fully Convolutional Neural Network Approach for Detection and Classification of Attacks on Industrial IoT Devices in Smart Manufacturing Systems
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 32
  start-page: 17361
  year: 2020
  end-page: 17378
  article-title: Anomaly Detection via Blockchained Deep Learning Smart Contracts in Industry 4.0
  publication-title: Neural Computing and Applications
– volume: 117
  start-page: 321
  issue: 1
  year: 2020
  end-page: 338
  article-title: Machine Learning and Deep Learning Algorithms on the Industrial Internet of Things (IIoT)
  publication-title: Advances in Computers
– volume: 8
  start-page: 83965
  year: 2020
  end-page: 83973
  article-title: An Ensemble Deep Learning‐Based Cyber‐Attack Detection in Industrial Control System
  publication-title: IEEE Access
– volume: 9
  start-page: 55595
  year: 2021
  end-page: 55605
  article-title: A Hybrid Deep Random Neural Network for Cyberattack Detection in the Industrial Internet of Things
  publication-title: IEEE Access
– volume: 9
  start-page: 101
  issue: 1
  year: 2023
  end-page: 110
  article-title: An Ensemble Deep Learning Model for Cyber Threat Hunting in Industrial Internet of Things
  publication-title: Digital Communications and Networks
– volume: 154
  year: 2020
  article-title: Robust Detection for Network Intrusion of Industrial IoT Based on Multi‐CNN Fusion
  publication-title: Measurement
– start-page: 1
  year: 2020
  end-page: 6
– volume: 6
  start-page: 6822
  issue: 4
  year: 2019
  end-page: 6834
  article-title: Machine Learning‐Based Network Vulnerability Analysis of Industrial Internet of Things
  publication-title: IEEE Internet of Things Journal
– volume: 33
  start-page: 12073
  year: 2021
  end-page: 12085
  article-title: One‐Class Graph Neural Networks for Anomaly Detection in Attributed Networks
  publication-title: Neural Computing and Applications
– start-page: 1
  year: 2020
  end-page: 4
– volume: 10
  issue: 4
  year: 2021
  article-title: A Machine Learning Approach for Anomaly Detection in Industrial Control Systems Based on Measurement Data
  publication-title: Electronics
– ident: e_1_2_8_20_1
  doi: 10.1007/s00521-020-05189-8
– ident: e_1_2_8_5_1
  doi: 10.1016/j.compeleceng.2019.106522
– ident: e_1_2_8_26_1
  doi: 10.1109/UCET51115.2020.9205361
– ident: e_1_2_8_30_1
  doi: 10.1080/19393555.2020.1767240
– ident: e_1_2_8_9_1
  doi: 10.1145/3133956.3134015
– ident: e_1_2_8_14_1
  doi: 10.3390/electronics10040407
– ident: e_1_2_8_17_1
  doi: 10.1109/ACCESS.2020.2992249
– ident: e_1_2_8_34_1
  doi: 10.1007/s00170-022-10259-3
– ident: e_1_2_8_12_1
  doi: 10.1109/ACCESS.2020.2994079
– ident: e_1_2_8_4_1
  doi: 10.1007/s11042-020-10354-1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cose.2020.101752
– ident: e_1_2_8_18_1
  doi: 10.1016/j.dcan.2022.09.008
– ident: e_1_2_8_8_1
  doi: 10.1145/3336191.3371876
– ident: e_1_2_8_23_1
  doi: 10.1155/2021/9485654
– ident: e_1_2_8_33_1
  doi: 10.1109/WCNC45663.2020.9120761
– ident: e_1_2_8_19_1
  doi: 10.1007/s00521-021-05924-9
– ident: e_1_2_8_24_1
  doi: 10.1109/TII.2019.2952917
– ident: e_1_2_8_22_1
  doi: 10.1109/JIOT.2020.3011726
– ident: e_1_2_8_3_1
  doi: 10.1109/JIOT.2019.2912022
– ident: e_1_2_8_6_1
  doi: 10.1016/j.measurement.2019.107450
– volume: 8
  start-page: 478
  issue: 5
  year: 2019
  ident: e_1_2_8_27_1
  article-title: Network Based Intrusion Detection Using the UNSW‐NB15 Dataset
  publication-title: International Journal of Computing and Digital Systems
– ident: e_1_2_8_28_1
  doi: 10.1016/j.scs.2021.102994
– ident: e_1_2_8_29_1
  doi: 10.1016/j.knosys.2023.110941
– ident: e_1_2_8_35_1
  doi: 10.32604/csse.2023.026712
– ident: e_1_2_8_10_1
  doi: 10.1016/bs.adcom.2019.10.007
– ident: e_1_2_8_32_1
  doi: 10.1016/j.procs.2020.03.367
– ident: e_1_2_8_2_1
  doi: 10.1109/ACCESS.2021.3094024
– ident: e_1_2_8_25_1
  doi: 10.1155/2021/7154587
– volume: 2020
  start-page: 1
  year: 2020
  ident: e_1_2_8_16_1
  article-title: Anomaly Detection for Industrial Control System Based on Autoencoder Neural Network
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2020/8897926
– ident: e_1_2_8_7_1
  doi: 10.1109/JIOT.2021.3074382
– ident: e_1_2_8_15_1
  doi: 10.1051/e3sconf/202017002007
– ident: e_1_2_8_21_1
  doi: 10.1109/ACCESS.2021.3071766
– ident: e_1_2_8_11_1
  doi: 10.1109/TII.2020.3022432
– ident: e_1_2_8_13_1
  doi: 10.1109/ICPS48405.2020.9274780
SSID ssj0000752548
Score 2.324572
Snippet ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process...
In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process and ensure...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms anomaly detection
bi‐directional LSTM
deep learning
industrial internet of things
particle swarm optimization
probabilistic neural network
sparse autoencoder
Title Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.70224
Volume 36
WOSCitedRecordID wos001570005400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2161-3915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000752548
  issn: 2161-3915
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKywADb0R5yUIMLKG13cSOmEofYqgqhFrULXKSM2JJqzZF4hfwtzk7fTEgITElsWzLcs7-ziff9xFya2TiG9VIvFAL4TWkBi_kEry6rwTjJjS-y-N-7cl-X41G4XOJPCxzYQp-iFXAza4Mt1_bBa7jWW1NGgp5fi8tAm2Rik2qQpOutF-6w94qxIJoiMcfp0nHbJQlZP6SW6jOa6v2PxBp00N1ENPd_9fgDsjewrOkzcIUDkkJsiOyu8E3eEy-1kIdtAgFQk7HhhbinbT1GcMUP6wfOaNtyN01rcyWWC0fLIEJtT7jfAp0Qcz6RnWWUnRZcTfA5wTPyUCb83xsCTJT7O4RYTKlTnvT3kpyhnBCht3OoPXkLZQYvMRmWHpMAvoRplEXvgiBMc1TFWiNBaBEAEKnhsWJMlLVhQokT6UEzYEh8mkmRSxOSTkbZ3BGqEosvZDhvvAtFvI40NjMVgw5dutXyc3yb0STgnAjKqiVeYSzGrlZrZI7N_u_14g6g4F7Of971Quyw626r7tBdknK-XQOV2Q7-cjfZ9PrhXV9A_jk0wI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60CurBt1ifQTx4Wd0k3SYLXuqjKNYiUsXbku5OxMu21K3gL_BvO8m2VQ-C4Gl3hySE7CTfZEi-D-DQqjSyupYGsZEyqCmDQSwUBmGkJRc2tpG_x_3YUu22fnqK76bgdHwXpuSHmCTc3Mzw67Wb4C4hffLFGopFcawcBE3DTI3cKKzAzMV986E1ybEQHNL-x4vScZdmiXk0JhcKxcmk_g9I-h6ieoxpLv2vd8uwOIotWaN0hhWYwnwVFr4xDq7Bx5dUByuTgViwnmWlfCc7f-_igD5cJPnKLrDwB7VyZ3FqPmTBPnNR43CAbETN-sxMnjEKWmk9oGefdsrIGsOi5ygyM2rujIAyY159051L8q6wDg_Ny875VTDSYghSd8cy4AopkrC1UEYyRs6NyHTdGDKglnWUJrO8m2qrdCh1XYlMKTQCOWGf4Up25QZU8l6Om8B06giGrIhk5NBQdOuGqrmCsaBmoyocjH9H0i8pN5KSXFkkNKqJH9UqHPnh_71Ectnp-Jetvxfdh7mrzm0raV23b7ZhXjitX3-ebAcqxWCIuzCbvhUvr4O9kat9Ao1_1uk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1oFdGFb_FtEBduRpukaTLgRq1FsRSRKu6GdOZG3ExLnQp-gb_tTaatuhAEVzMTkhAySc7JJTkH4MjpVDlTS6PYShnVtMUoFhqjqjKSCxc7Fe5xP7Z0u22enuK7KTgb34Up9SEmATc_M8J67Sc49jN3-qUaikVxoj0ETcNMTRHPr8BM47750JrEWAgOaf8TTOm4D7PEXI3FharidFL-ByR9p6gBY5pL_2vdMiyOuCU7LwfDCkxhvgoL3xQH1-Djy6qDlcFALFjPsdK-k12-d3FAH55JvrIGFuGgVu5TvJsPpWCfedY4HCAbSbM-M5tnjEgrrQf07NNOGdn5sOh5icyMqrsgoMxYcN_055LCUFiHh-ZV5_I6GnkxRKm_YxlxjcQkXK0qlYyRcysyU7eWEtDIOkqbOd5NjdOmKk1di0xrtAI5YZ_lWnblBlTyXo6bwEzqBYacUFJ5NBTduqViPmMsqFq1BYfj35H0S8mNpBRXFgn1ahJ6dQuOQ_f_niO56nTCy_bfsx7A3F2jmbRu2rc7MC-81W84TrYLlWIwxD2YTd-Kl9fB_mikfQJqrdZt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+Internet+of+Things+Cyber+Threats+Detection+Through+Deep+Feature+Learning+and+Stacked+Sparse+Autoencoder+Based+Classification&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Vijay+Anand%2C+R.&rft.au=Magesh%2C+G.&rft.au=Alagiri%2C+I.&rft.au=Brahmam%2C+Madala+Guru&rft.date=2025-09-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1002%2Fett.70224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ett_70224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon