ST-DBSCAN: An algorithm for clustering spatial–temporal data

This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN. We propose three marginal extensions to DBSCAN related with the identification of (i) core objects, (ii) noise objects, and (iii) adjacent clusters. In contrast to the existing density-based clustering...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data & knowledge engineering Ročník 60; číslo 1; s. 208 - 221
Hlavní autoři: Birant, Derya, Kut, Alp
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2007
Témata:
ISSN:0169-023X, 1872-6933
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN. We propose three marginal extensions to DBSCAN related with the identification of (i) core objects, (ii) noise objects, and (iii) adjacent clusters. In contrast to the existing density-based clustering algorithms, our algorithm has the ability of discovering clusters according to non-spatial, spatial and temporal values of the objects. In this paper, we also present a spatial–temporal data warehouse system designed for storing and clustering a wide range of spatial–temporal data. We show an implementation of our algorithm by using this data warehouse and present the data mining results.
ISSN:0169-023X
1872-6933
DOI:10.1016/j.datak.2006.01.013