Comparative Analysis of Deep Learning‐Based Algorithms for Peptide Structure Prediction
While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite being a crucial step in understanding their physio‐pathological function or designing new drugs. In rec...
Uloženo v:
| Vydáno v: | Proteins, structure, function, and bioinformatics |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
05.10.2025
|
| Témata: | |
| ISSN: | 0887-3585, 1097-0134, 1097-0134 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite being a crucial step in understanding their physio‐pathological function or designing new drugs. In recent years, deep‐learning methods have enabled a major breakthrough for the protein 3D structure prediction approaches, allowing to predict protein 3D structures with a near‐experimental accuracy for nearly any protein sequence. This present study aims at confronting some of these new methods (AlphaFold2, RoseTTAFold2, and ESMFold) for the peptides' 3D structure prediction problem and evaluating their performance. All methods produced high‐quality results, but their overall performance is lower as compared to the prediction of protein 3D structures. We also identified a few structural features that impede the ability to produce high‐quality peptide structure predictions. These findings point out the discrepancy that still exists between the protein and peptide 3D structure prediction methods and underline a few cases where the generated peptide structures should be used very cautiously. |
|---|---|
| AbstractList | While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite being a crucial step in understanding their physio-pathological function or designing new drugs. In recent years, deep-learning methods have enabled a major breakthrough for the protein 3D structure prediction approaches, allowing to predict protein 3D structures with a near-experimental accuracy for nearly any protein sequence. This present study aims at confronting some of these new methods (AlphaFold2, RoseTTAFold2, and ESMFold) for the peptides' 3D structure prediction problem and evaluating their performance. All methods produced high-quality results, but their overall performance is lower as compared to the prediction of protein 3D structures. We also identified a few structural features that impede the ability to produce high-quality peptide structure predictions. These findings point out the discrepancy that still exists between the protein and peptide 3D structure prediction methods and underline a few cases where the generated peptide structures should be used very cautiously. While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite being a crucial step in understanding their physio-pathological function or designing new drugs. In recent years, deep-learning methods have enabled a major breakthrough for the protein 3D structure prediction approaches, allowing to predict protein 3D structures with a near-experimental accuracy for nearly any protein sequence. This present study aims at confronting some of these new methods (AlphaFold2, RoseTTAFold2, and ESMFold) for the peptides' 3D structure prediction problem and evaluating their performance. All methods produced high-quality results, but their overall performance is lower as compared to the prediction of protein 3D structures. We also identified a few structural features that impede the ability to produce high-quality peptide structure predictions. These findings point out the discrepancy that still exists between the protein and peptide 3D structure prediction methods and underline a few cases where the generated peptide structures should be used very cautiously.While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite being a crucial step in understanding their physio-pathological function or designing new drugs. In recent years, deep-learning methods have enabled a major breakthrough for the protein 3D structure prediction approaches, allowing to predict protein 3D structures with a near-experimental accuracy for nearly any protein sequence. This present study aims at confronting some of these new methods (AlphaFold2, RoseTTAFold2, and ESMFold) for the peptides' 3D structure prediction problem and evaluating their performance. All methods produced high-quality results, but their overall performance is lower as compared to the prediction of protein 3D structures. We also identified a few structural features that impede the ability to produce high-quality peptide structure predictions. These findings point out the discrepancy that still exists between the protein and peptide 3D structure prediction methods and underline a few cases where the generated peptide structures should be used very cautiously. |
| Author | Zagury, Jean‐François Langenfeld, Florent Sauvestre, Clément |
| Author_xml | – sequence: 1 givenname: Clément orcidid: 0000-0002-3814-0514 surname: Sauvestre fullname: Sauvestre, Clément organization: Laboratoire GBCM, EA7528, Conservatoire National des Arts et métiers (CNAM) HESAM Université Paris France, Peptinov Paris France – sequence: 2 givenname: Jean‐François surname: Zagury fullname: Zagury, Jean‐François organization: Laboratoire GBCM, EA7528, Conservatoire National des Arts et métiers (CNAM) HESAM Université Paris France – sequence: 3 givenname: Florent orcidid: 0000-0002-3184-3401 surname: Langenfeld fullname: Langenfeld, Florent organization: Laboratoire GBCM, EA7528, Conservatoire National des Arts et métiers (CNAM) HESAM Université Paris France, Peptinov Paris France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41047732$$D View this record in MEDLINE/PubMed |
| BookMark | eNo90M1KxDAUhuEgis6MbrwAyVKE6mmSNu1yHH9hwAF14aqk6alG2qYmqTA7L8Fr9Eqc0dHV4cDLt3jGZLuzHRJyGMNpDMDOemfDqQQQ-RYZxZDLCGIutskIskxGPMmSPTL2_hUA0pynu2RPxCCk5GxEnma27ZVTwbwjnXaqWXrjqa3pBWJP56hcZ7rnr4_Pc-WxotPm2ToTXlpPa-voAvtgKqT3wQ06DA7pwmFldDC22yc7tWo8HmzuhDxeXT7MbqL53fXtbDqPNMtEiGqOdZ1mJUCV1ohMV1IkyKtS54nImUgVS0FBrnVZJkzFLOcVZnL1Mp0Ci_mEHP_urhjeBvShaI3X2DSqQzv4grNEJiwVuVylR5t0KFusit6ZVrll8cexCk5-A-2s9w7r_ySGYm1drK2LH2v-DeYYc0A |
| Cites_doi | 10.1093/nar/gky1047 10.1093/nar/gkad376 10.1021/bi952419l 10.1038/s41586‐024‐07487‐w 10.1093/nar/gkr703 10.1021/jacs.2c12462 10.1016/0263‐7855(90)80070‐V 10.1093/nar/gkm216 10.1093/bib/bbab308 10.1111/j.1742-4658.2009.07360.x 10.1002/prot.26593 10.1093/nar/gkg571 10.1111/j.1399-6576.1997.tb04627.x 10.1016/j.str.2022.11.012 10.3389/fmolb.2021.697586 10.1016/j.toxicon.2018.05.006 10.1101/2023.05.24.542179 10.1093/bioinformatics/btt473 10.1039/D2SC00924B 10.1107/S0021889892009944 10.1038/nature08142 10.1073/pnas.1111471108 10.1038/s41392‐022‐00904‐4 10.1093/nar/28.1.235 10.1002/anie.201501714 10.1002/pep2.24073 10.1016/S0006‐3495(03)74814‐0 10.1107/S0907444913007051 10.7554/eLife.75751 10.1093/nar/gks1169 10.1002/bip.20734 10.1038/s41573‐020‐00135‐8 10.1093/bib/bbae215 10.1038/nsb1203-980 10.1002/prot.26257 10.1038/nsb1101-923 10.1038/s41586‐023‐06832‐9 10.1038/s41573‐021‐00337‐8 10.1186/s13062-015-0103-4 10.1002/prot.26237 10.1038/s41586-021-03828-1 10.1038/nbt.3988 10.1038/s41586-021-03819-2 10.1016/j.sbi.2024.102973 10.1101/622803 10.3390/toxins15100600 10.1021/bi035412 10.1002/(SICI)1097‐0282(199705)41:6<623::AID‐BIP3>3.0.CO;2‐S |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). PROTEINS: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2025 The Author(s). PROTEINS: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1002/prot.70049 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| ExternalDocumentID | 41047732 10_1002_prot_70049 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Association Nationale de la Recherche et de la Technologie |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABLJU ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT ALUQN NPM 7X8 |
| ID | FETCH-LOGICAL-c284t-f3eff68b00d6fee2cd745e3dbc9549246a260a09ccbb52a1293de87ccb2c60213 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586797900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Tue Oct 07 08:12:52 EDT 2025 Tue Oct 07 09:50:15 EDT 2025 Sat Nov 29 07:22:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | prediction deep learning peptide three‐dimensional structure alphafold |
| Language | English |
| License | 2025 The Author(s). PROTEINS: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c284t-f3eff68b00d6fee2cd745e3dbc9549246a260a09ccbb52a1293de87ccb2c60213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3184-3401 0000-0002-3814-0514 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.70049 |
| PMID | 41047732 |
| PQID | 3257526497 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3257526497 pubmed_primary_41047732 crossref_primary_10_1002_prot_70049 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-05 |
| PublicationDateYYYYMMDD | 2025-10-05 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2025 |
| References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – ident: e_1_2_9_45_1 doi: 10.1093/nar/gky1047 – ident: e_1_2_9_12_1 doi: 10.1093/nar/gkad376 – ident: e_1_2_9_29_1 doi: 10.1021/bi952419l – ident: e_1_2_9_20_1 – ident: e_1_2_9_35_1 doi: 10.1038/s41586‐024‐07487‐w – ident: e_1_2_9_46_1 doi: 10.1093/nar/gkr703 – ident: e_1_2_9_32_1 doi: 10.1021/jacs.2c12462 – ident: e_1_2_9_47_1 – ident: e_1_2_9_41_1 doi: 10.1016/0263‐7855(90)80070‐V – ident: e_1_2_9_39_1 doi: 10.1093/nar/gkm216 – ident: e_1_2_9_11_1 doi: 10.1093/bib/bbab308 – ident: e_1_2_9_4_1 doi: 10.1111/j.1742-4658.2009.07360.x – ident: e_1_2_9_33_1 doi: 10.1002/prot.26593 – ident: e_1_2_9_48_1 doi: 10.1093/nar/gkg571 – ident: e_1_2_9_3_1 doi: 10.1111/j.1399-6576.1997.tb04627.x – ident: e_1_2_9_14_1 doi: 10.1016/j.str.2022.11.012 – ident: e_1_2_9_5_1 doi: 10.3389/fmolb.2021.697586 – ident: e_1_2_9_23_1 doi: 10.1016/j.toxicon.2018.05.006 – ident: e_1_2_9_17_1 doi: 10.1101/2023.05.24.542179 – ident: e_1_2_9_50_1 doi: 10.1093/bioinformatics/btt473 – ident: e_1_2_9_26_1 doi: 10.1039/D2SC00924B – ident: e_1_2_9_40_1 doi: 10.1107/S0021889892009944 – ident: e_1_2_9_44_1 doi: 10.1038/nature08142 – ident: e_1_2_9_52_1 doi: 10.1073/pnas.1111471108 – ident: e_1_2_9_7_1 doi: 10.1038/s41392‐022‐00904‐4 – ident: e_1_2_9_21_1 doi: 10.1093/nar/28.1.235 – ident: e_1_2_9_25_1 doi: 10.1002/anie.201501714 – ident: e_1_2_9_31_1 doi: 10.1002/pep2.24073 – ident: e_1_2_9_30_1 doi: 10.1016/S0006‐3495(03)74814‐0 – ident: e_1_2_9_51_1 doi: 10.1107/S0907444913007051 – ident: e_1_2_9_38_1 doi: 10.7554/eLife.75751 – ident: e_1_2_9_43_1 doi: 10.1093/nar/gks1169 – ident: e_1_2_9_2_1 doi: 10.1002/bip.20734 – ident: e_1_2_9_8_1 doi: 10.1038/s41573‐020‐00135‐8 – ident: e_1_2_9_34_1 doi: 10.1093/bib/bbae215 – ident: e_1_2_9_22_1 doi: 10.1038/nsb1203-980 – ident: e_1_2_9_49_1 doi: 10.1002/prot.26257 – ident: e_1_2_9_9_1 doi: 10.1038/nsb1101-923 – ident: e_1_2_9_37_1 doi: 10.1038/s41586‐023‐06832‐9 – ident: e_1_2_9_6_1 doi: 10.1038/s41573‐021‐00337‐8 – ident: e_1_2_9_10_1 doi: 10.1186/s13062-015-0103-4 – ident: e_1_2_9_19_1 – ident: e_1_2_9_13_1 doi: 10.1002/prot.26237 – ident: e_1_2_9_16_1 doi: 10.1038/s41586-021-03828-1 – ident: e_1_2_9_42_1 doi: 10.1038/nbt.3988 – ident: e_1_2_9_15_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_9_36_1 doi: 10.1016/j.sbi.2024.102973 – ident: e_1_2_9_18_1 doi: 10.1101/622803 – ident: e_1_2_9_28_1 doi: 10.3390/toxins15100600 – ident: e_1_2_9_24_1 doi: 10.1021/bi035412 – ident: e_1_2_9_27_1 doi: 10.1002/(SICI)1097‐0282(199705)41:6<623::AID‐BIP3>3.0.CO;2‐S |
| SSID | ssj0006936 |
| Score | 2.4837265 |
| SecondaryResourceType | online_first |
| Snippet | While of primary importance in both the biomedical and therapeutic fields, peptides suffer from a relative lack of dedicated tools to predict efficiently and... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| Title | Comparative Analysis of Deep Learning‐Based Algorithms for Peptide Structure Prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41047732 https://www.proquest.com/docview/3257526497 |
| WOSCitedRecordID | wos001586797900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DdheEGx8jI3JCMTLFGjz5eRx66gQqqYKNqh4iWzHLpW6pGqzafv33BvbaSo0CR54iRLHcaR7juxr3-tjQt6JNJIBk6Gnkyj1Qp70POHnodcVkQKHHMawekH_-5CdnyfjcTrqdLTbC3MzY0WR3N6m8_8KNZQB2Lh19h_gbhqFArgH0OEKsMP1r4Dvt_S825IjZ0rNnZzqxDuF0Ss_PplNysW0-mVUGY5HmOKSY3IhispiaGG0wEBOA571Ykco7mAXqpeuLj7gKFlni9icUDEtrTJr1cqq_8avUdzDfNKfmVh9OwPnJ5_Y8P4XxQsPneu6EiunTSND3BVRaHvA9mBWLlwDdg3Dr7VPuyaYrUy_20VR2J5Z1_yjVzcqsShc8QHV-NN2JTD-_KqGMkTVCWZXS9c1tN2rDbLlsyiFDnzr7OvgctiM2XGKQWwrXut_XP1qhzxyH697LvdMR2q35OIJeWznE_TE8OAp6ahil-wB7lV5dUff0zrDtw6d7JKHp-5uu-_O-dsjP1qEoY4wtNQUCUPXCUNXhKEAK7WEoQ1h6Iowz8jl4NNF_7Nnj9vwJPgolacDpXWcQD-cx1opX-YsjFSQC4mhYD-MOcx9eTeVUojI5-go5iph8OjLGFzF4DnZLMpCvSRUoeRlJFTMYx2GUiXoFzKdc5YEPSnYPnnrTJnNjapKZvSz_Qxtn9W23ydvnJUzsAlGsnihyutlFsBAE4Ern0JLL4z5m3YcXK_ufXNAdlYkPCSbYCL1mjyQN9V0uTgiG2ycHFmC_AaUgIB7 |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Deep+Learning-Based+Algorithms+for+Peptide+Structure+Prediction&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Sauvestre%2C+Cl%C3%A9ment&rft.au=Zagury%2C+Jean-Fran%C3%A7ois&rft.au=Langenfeld%2C+Florent&rft.date=2025-10-05&rft.eissn=1097-0134&rft_id=info:doi/10.1002%2Fprot.70049&rft_id=info%3Apmid%2F41047732&rft.externalDocID=41047732 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |