Non-cancellative Boolean circuits: A generalization of monotone boolean circuits
Cancellations are known to be helpful in efficient algebraic computation of polynomials over fields. We define a notion of cancellation in Boolean circuits and define Boolean circuits that do not use cancellation to be non-cancellative. Non-cancellative Boolean circuits are a natural generalization...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 237; číslo 1; s. 197 - 212 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
28.04.2000
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Cancellations are known to be helpful in efficient algebraic computation of polynomials over fields. We define a notion of cancellation in Boolean circuits and define Boolean circuits that do not use cancellation to be
non-cancellative. Non-cancellative Boolean circuits are a natural generalization of monotone Boolean circuits. We show that in the absence of cancellation, Boolean circuits require super-polynomial size to compute the determinant interpreted over
GF(2). This non-monotone Boolean function is known to be in
P
. In the spirit of monotone complexity classes, we define complexity classes based on non-cancellative Boolean circuits. We show that when the Boolean circuit model is restricted by withholding cancellation,
P
and popular classes within
P
are restricted as well, but
NP
and circuit definable classes above it remain unchanged. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/S0304-3975(98)00170-4 |