Non-cancellative Boolean circuits: A generalization of monotone boolean circuits

Cancellations are known to be helpful in efficient algebraic computation of polynomials over fields. We define a notion of cancellation in Boolean circuits and define Boolean circuits that do not use cancellation to be non-cancellative. Non-cancellative Boolean circuits are a natural generalization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 237; číslo 1; s. 197 - 212
Hlavní autoři: Sengupta, Rimli, Venkateswaran, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 28.04.2000
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cancellations are known to be helpful in efficient algebraic computation of polynomials over fields. We define a notion of cancellation in Boolean circuits and define Boolean circuits that do not use cancellation to be non-cancellative. Non-cancellative Boolean circuits are a natural generalization of monotone Boolean circuits. We show that in the absence of cancellation, Boolean circuits require super-polynomial size to compute the determinant interpreted over GF(2). This non-monotone Boolean function is known to be in P . In the spirit of monotone complexity classes, we define complexity classes based on non-cancellative Boolean circuits. We show that when the Boolean circuit model is restricted by withholding cancellation, P and popular classes within P are restricted as well, but NP and circuit definable classes above it remain unchanged.
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(98)00170-4