Breaking Boundaries in Histone Modification MS-Based Detection: A Tailored Search Strategy for Unrestricted Identification of Novel Epigenetic Marks
Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncover...
Gespeichert in:
| Veröffentlicht in: | Molecular & cellular proteomics Jg. 24; H. 11; S. 101080 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.11.2025
|
| Schlagworte: | |
| ISSN: | 1535-9476, 1535-9484, 1535-9484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncovered additional PTMs that significantly contribute to chromatin structure and function. Mass spectrometry is the most effective analytical method for studying histone PTMs; however, computational limitations often restrict the analysis to common modifications. Unrestrictive search strategies have the potential to enable a more comprehensive characterization of the histone modification landscape. In this work, we systematically assess the application of unrestrictive search approaches to histone data. After evaluating the limitations of these methods, we develop a novel bioinformatics workflow, named HiP-Frag (histone PTM analysis with FragPipe), which enables the identification of 96 sites decorated with uncommon PTMs on core histones—60 of which were previously unreported—as well as 55 histone marks on linker histones, including 13 novel ones, purified from human cell lines and primary samples. The expanded histone PTM analysis enabled by this strategy is among the first to extract previously unexplored epigenetic information from mass spectrometry raw data. This approach paves the way for a facilitated and more streamlined identification of uncommon and yet unannotated histone modifications, supporting a deeper dissection of the histone code and the understanding of the potential biological role of the novel epigenetic marks.
[Display omitted]
•Novel histone post-translational modifications (PTMs) have emerged as regulators of chromatin structure.•Histone PTM analysis with FragPipe (HiP-Frag) is a workflow integrating closed, open, and detailed mass offset searches.•HiP-Frag simplifies the discovery of novel histone modifications.•HiP-Frag identified 60 novel PTMs on core histones and 13 on linker histones.
This study introduces and describes HiP-Frag, a bioinformatics workflow that exploits unrestrictive search strategies to expand the analysis of histone post-translational modifications (PTMs) to unknown ones, from mass spectrometry data. By expanding the catalog of histone PTMs with 60 marks on core histones and 13 on linker histones, HiP-Frag enables a more comprehensive investigation of the histone code, giving access to previously unexplored epigenetic information. |
|---|---|
| AbstractList | Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncovered additional PTMs that significantly contribute to chromatin structure and function. Mass spectrometry is the most effective analytical method for studying histone PTMs; however, computational limitations often restrict the analysis to common modifications. Unrestrictive search strategies have the potential to enable a more comprehensive characterization of the histone modification landscape. In this work, we systematically assess the application of unrestrictive search approaches to histone data. After evaluating the limitations of these methods, we develop a novel bioinformatics workflow, named HiP-Frag (histone PTM analysis with FragPipe), which enables the identification of 96 sites decorated with uncommon PTMs on core histones-60 of which were previously unreported-as well as 55 histone marks on linker histones, including 13 novel ones, purified from human cell lines and primary samples. The expanded histone PTM analysis enabled by this strategy is among the first to extract previously unexplored epigenetic information from mass spectrometry raw data. This approach paves the way for a facilitated and more streamlined identification of uncommon and yet unannotated histone modifications, supporting a deeper dissection of the histone code and the understanding of the potential biological role of the novel epigenetic marks. Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncovered additional PTMs that significantly contribute to chromatin structure and function. Mass spectrometry is the most effective analytical method for studying histone PTMs; however, computational limitations often restrict the analysis to common modifications. Unrestrictive search strategies have the potential to enable a more comprehensive characterization of the histone modification landscape. In this work, we systematically assess the application of unrestrictive search approaches to histone data. After evaluating the limitations of these methods, we develop a novel bioinformatics workflow, named HiP-Frag (histone PTM analysis with FragPipe), which enables the identification of 96 sites decorated with uncommon PTMs on core histones—60 of which were previously unreported—as well as 55 histone marks on linker histones, including 13 novel ones, purified from human cell lines and primary samples. The expanded histone PTM analysis enabled by this strategy is among the first to extract previously unexplored epigenetic information from mass spectrometry raw data. This approach paves the way for a facilitated and more streamlined identification of uncommon and yet unannotated histone modifications, supporting a deeper dissection of the histone code and the understanding of the potential biological role of the novel epigenetic marks. [Display omitted] •Novel histone post-translational modifications (PTMs) have emerged as regulators of chromatin structure.•Histone PTM analysis with FragPipe (HiP-Frag) is a workflow integrating closed, open, and detailed mass offset searches.•HiP-Frag simplifies the discovery of novel histone modifications.•HiP-Frag identified 60 novel PTMs on core histones and 13 on linker histones. This study introduces and describes HiP-Frag, a bioinformatics workflow that exploits unrestrictive search strategies to expand the analysis of histone post-translational modifications (PTMs) to unknown ones, from mass spectrometry data. By expanding the catalog of histone PTMs with 60 marks on core histones and 13 on linker histones, HiP-Frag enables a more comprehensive investigation of the histone code, giving access to previously unexplored epigenetic information. Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncovered additional PTMs that significantly contribute to chromatin structure and function. Mass spectrometry (MS) is the most effective analytical method for studying histone PTMs; however, computational limitations often restrict the analysis to common modifications. Unrestrictive search strategies have the potential to enable a more comprehensive characterization of the histone modification landscape. In this work, we systematically assess the application of unrestrictive search approaches to histone data. After evaluating the limitations of these methods, we develop a novel bioinformatics workflow, named HiP-Frag (Histone PTM analysis with FragPipe), which enables the identification of 96 sites decorated with uncommon PTMs on core histones-60 of which were previously unreported-as well as 55 histone marks on linker histones, including 13 novel ones, purified from human cell lines and primary samples. The expanded histone PTM analysis enabled by this strategy is among the first to extract previously unexplored epigenetic information from MS raw data. This approach paves the way for a facilitated and more streamlined identification of uncommon and yet unannotated histone modifications, supporting a deeper dissection of the histone code and the understanding of the potential biological role of the novel epigenetic marks.Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are linked to various diseases, including cancer. While lysine acetylation and methylation have been extensively studied, recent research has uncovered additional PTMs that significantly contribute to chromatin structure and function. Mass spectrometry (MS) is the most effective analytical method for studying histone PTMs; however, computational limitations often restrict the analysis to common modifications. Unrestrictive search strategies have the potential to enable a more comprehensive characterization of the histone modification landscape. In this work, we systematically assess the application of unrestrictive search approaches to histone data. After evaluating the limitations of these methods, we develop a novel bioinformatics workflow, named HiP-Frag (Histone PTM analysis with FragPipe), which enables the identification of 96 sites decorated with uncommon PTMs on core histones-60 of which were previously unreported-as well as 55 histone marks on linker histones, including 13 novel ones, purified from human cell lines and primary samples. The expanded histone PTM analysis enabled by this strategy is among the first to extract previously unexplored epigenetic information from MS raw data. This approach paves the way for a facilitated and more streamlined identification of uncommon and yet unannotated histone modifications, supporting a deeper dissection of the histone code and the understanding of the potential biological role of the novel epigenetic marks. |
| ArticleNumber | 101080 |
| Author | Nesvizhskii, Alexey I. Polasky, Daniel A. Noberini, Roberta Vai, Alessandro Yu, Fengchao Bonaldi, Tiziana Graziadei, Andrea |
| Author_xml | – sequence: 1 givenname: Alessandro surname: Vai fullname: Vai, Alessandro organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy – sequence: 2 givenname: Roberta orcidid: 0000-0002-7267-1079 surname: Noberini fullname: Noberini, Roberta organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy – sequence: 3 givenname: Andrea surname: Graziadei fullname: Graziadei, Andrea organization: Human Technopole, Milan, Italy – sequence: 4 givenname: Daniel A. surname: Polasky fullname: Polasky, Daniel A. organization: Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA – sequence: 5 givenname: Fengchao orcidid: 0000-0002-7695-3698 surname: Yu fullname: Yu, Fengchao organization: Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA – sequence: 6 givenname: Alexey I. surname: Nesvizhskii fullname: Nesvizhskii, Alexey I. email: nesvi@med.umich.edu organization: Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA – sequence: 7 givenname: Tiziana orcidid: 0000-0003-3556-1265 surname: Bonaldi fullname: Bonaldi, Tiziana email: tiziana.bonaldi@ieo.it organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41038282$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctuEzEYhS1URC_wBEjISzYTfJ2ZILFoSqGVGlikXVu-_BOcTuxgO5X6Hn3gOk0pu65sHX_nt33OMToIMQBCHymZUELbL6vJ2m5SnDDC5E4hPXmDjqjkspmKXhy87Lv2EB3nvCKEEdrJd-hQUMJ71rMj9DBLoG99WOJZ3Aank4eMfcAXPpd6HZ5H5wdvdfEx4PmimekMDn-HAnYnfcWn-Fr7MaaqLkAn-wcvStIFlvd4iAnfhAS5JG9LBS4dhPJ_XBzwr3gHIz7f-CUEKN7iuU63-T16O-gxw4fn9QTd_Di_Prtorn7_vDw7vWos60VpBAPBLOiBtc6Y1hgqhewMcEr7QTIAAkIyw7WDKTFUdMxMWT3j1nVC8pafoM_7uTXGv9v6TrX22cI46gBxmxVnsu1Jz7ms6KdndGvW4NQm-bVO9-pfkhXge8CmmHOC4QWhRO36Uiv11Jfa9aX2fVXXt70L6jfvPCSVrYdgwflUE1Yu-lf9j6fTn-U |
| Cites_doi | 10.1016/j.cell.2011.08.008 10.1073/pnas.51.5.786 10.1002/pmic.201300256 10.3390/cancers11050723 10.1007/s00535-009-0193-9 10.1038/s41467-018-05567-w 10.1016/j.bbagrm.2015.09.008 10.1074/mcp.TIR119.001616 10.1038/nprot.2006.468 10.1002/pmic.201400569 10.1007/s00018-023-05104-z 10.1016/j.mcpro.2024.100799 10.1021/acs.jproteome.4c01056 10.1093/glycob/cwab011 10.1016/j.trecan.2023.01.005 10.1016/j.jprot.2010.08.009 10.1093/nar/gkae1011 10.1038/s41419-025-07498-z 10.1038/s41467-019-09192-z 10.1038/nmeth.4256 10.1016/j.mcpro.2021.100077 10.3390/ijms21197330 10.1186/s13148-021-01120-7 10.1038/nbt.3267 10.1038/s41392-024-02039-0 10.1038/s41419-025-07359-9 10.1038/s41467-020-17921-y 10.1038/cr.2011.22 10.1038/s41392-024-01918-w 10.1021/pr200913a 10.1007/978-1-0716-2863-8_7 10.1038/4133 10.1021/jasms.3c00223 10.1016/j.jprot.2013.08.012 10.1016/j.molcel.2024.02.001 10.7150/ijbs.73398 10.7150/ijbs.95954 10.1016/j.tibs.2020.05.009 10.1073/pnas.0606775103 10.1038/s41586-019-1678-1 10.3390/cells9091968 10.1126/sciadv.adf1416 10.1021/ac025747h 10.1074/mcp.M600255-MCP200 10.1038/s41597-022-01736-1 10.1186/s13148-022-01371-y 10.1002/rcm.8401 10.1038/s41579-019-0243-0 10.1016/j.cellsig.2024.111468 10.1038/s41592-020-0912-y 10.1016/j.cell.2007.02.005 10.1167/iovs.65.2.27 10.3390/ijms21165941 10.1016/j.ymeth.2019.10.001 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.mcpro.2025.101080 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1535-9484 |
| ExternalDocumentID | 41038282 10_1016_j_mcpro_2025_101080 S1535947625001793 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 123 18M 29M 2WC 34G 39C 4.4 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAXUO AAYWO ABDNZ ACGFO ACIWK ACPRK ACVFH ACYGS ADBBV ADCNI ADVLN AENEX AEUPX AEXQZ AFPKN AFPUW AFRAH AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE KQ8 OK1 P2P RHI RNS ROL RPM TBC TR2 W8F WOQ AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c284t-42e42ceaf26dbb6bb15457be3118f52ee0e452b3ade90b1472b921183cd745363 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1535-9476 1535-9484 |
| IngestDate | Mon Oct 06 18:02:41 EDT 2025 Tue Nov 25 01:40:43 EST 2025 Wed Nov 05 20:59:56 EST 2025 Sat Nov 22 16:52:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | pr OS MS DMO PTM K PIC PSM PRO epigenetics bioinformatics workflow HiP-Frag R FDR LC mass spectrometry me3 post-translational modifications FA DIA histone PTM discovery AGE |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c284t-42e42ceaf26dbb6bb15457be3118f52ee0e452b3ade90b1472b921183cd745363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7695-3698 0000-0003-3556-1265 0000-0002-7267-1079 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.mcpro.2025.101080 |
| PMID | 41038282 |
| PQID | 3256808335 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3256808335 pubmed_primary_41038282 crossref_primary_10_1016_j_mcpro_2025_101080 elsevier_sciencedirect_doi_10_1016_j_mcpro_2025_101080 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular & cellular proteomics |
| PublicationTitleAlternate | Mol Cell Proteomics |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Cole, Hanson, James, Dockrell, Dickman (bib54) 2019; 33 Perez-Riverol, Bandla, Kundu, Kamatchinathan, Bai, Hewapathirana (bib55) 2025; 53 Provez, Van Puyvelde, Corveleyn, Demeulemeester, Verhelst, Lintermans (bib42) 2022; 9 Zhang, Tang, Huang, Zhou, Cui, Weng (bib20) 2019; 574 Wisniewski, Zougman, Kruger, Mann (bib12) 2007; 6 Kong, Leprevost, Avtonomov, Mellacheruvu, Nesvizhskii (bib28) 2017; 14 Cain, Solis, Cordwell (bib36) 2014; 97 Colaert, Degroeve, Helsens, Martens (bib17) 2011; 10 Noberini, Restellini, Savoia, Bonaldi (bib24) 2020; 184 Yu, Teo, Kong, Haynes, Avtonomov, Geiszler (bib18) 2020; 11 Noberini, Morales Torres, Savoia, Brandini, Jodice, Bertalot (bib46) 2020; 21 Herwig-Carl, Sharma, Tischler, Pelusi, Loeffler, Holz (bib34) 2024; 65 Noberini, Longhi, Bonaldi (bib25) 2023; 2603 Takino, Kobayashi, Takeuchi (bib40) 2010; 45 Hijazi, Manessier, Brugiere, Ravnsborg, Courcon, Brule (bib52) 2025; 24 Meert, Govaert, Scheerlinck, Dhaenens, Deforce (bib33) 2015; 15 Chan, Maze (bib1) 2020; 45 Tan, Luo, Lee, Jin, Yang, Montellier (bib21) 2011; 146 da Veiga Leprevost, Haynes, Avtonomov, Chang, Shanmugam, Mellacheruvu (bib29) 2020; 17 Scaffidi (bib44) 2016; 1859 MacDonald, Khan, Lin, Hurren, Schimmer, Kislinger (bib51) 2024; 84 Deng, Li, Yin, Liu, Li, Liao (bib6) 2025; 16 Macek, Forchhammer, Hardouin, Weber-Ban, Grangeasse, Mijakovic (bib37) 2019; 17 Dai, Qiao, Fang, Guo, Bai, Liu (bib49) 2024; 9 Keller, Nesvizhskii, Kolker, Aebersold (bib30) 2002; 74 Nesvizhskii (bib16) 2010; 73 Bannister, Kouzarides (bib2) 2011; 21 Rojas Ramirez, Yu, Polasky, Nesvizhskii (bib32) 2025 Yang, Luo, Zhao, Li, Wang, Zeng (bib5) 2022; 18 Moradian, Kalli, Sweredoski, Hess (bib10) 2014; 14 Knorlein, Xiao, David (bib3) 2023; 9 Ma, Ding, Xu, Poon (bib39) 2024; 20 Kouzarides (bib48) 2007; 128 Gao, Sheng, Du, Zhang, Han, Chen (bib38) 2023; 9 Yao, Hu, Wang (bib50) 2024; 9 Doellinger, Schneider, Hoeller, Lasch (bib35) 2020; 19 Noberini, Savoia, Brandini, Greco, Marra, Bertalot (bib26) 2021; 13 Shi, Cui, Qin, Chen, Yu, Lv (bib4) 2024; 81 Zheng, Omans, Leicher, Osunsade, Agustinus, Finkin-Groner (bib9) 2019; 10 Shevchenko, Tomas, Havlis, Olsen, Mann (bib27) 2006; 1 Noberini, Restellini, Savoia, Raimondi, Ghiani, Jodice (bib23) 2019; 11 Jiang, Zhou, Taghizadeh, Dong, Dedon (bib41) 2007; 104 Li, Chen, Jin, Gu, Wang, Huang (bib8) 2024; 124 Chick, Kolippakkam, Nusinow, Zhai, Rad, Huttlin (bib19) 2015; 33 Zeng, Jiang, Chen, Xu, Zhang, Cai (bib7) 2025; 16 Vignali, Workman (bib43) 1998; 5 Robusti, Vai, Bonaldi, Noberini (bib11) 2022; 14 Huang, Zhang, Wang, Perez-Neut, Han, Zheng (bib22) 2018; 9 Mir, Habib, Uddin (bib53) 2021; 31 Searfoss, Karki, Lin, Robison, Garcia (bib14) 2023; 34 Scumaci, Olivo, Fiumara, La Chimia, De Angelis, Mauro (bib13) 2020; 9 Vai, Noberini, Ghirardi, Rodrigues de Paula, Carminati, Pallavi (bib15) 2024; 23 Andres, Garcia-Gomis, Ponte, Suau, Roque (bib45) 2020; 21 Allfrey, Faulkner, Mirsky (bib47) 1964; 51 Yu, Haynes, Nesvizhskii (bib31) 2021; 20 Zeng (10.1016/j.mcpro.2025.101080_bib7) 2025; 16 Noberini (10.1016/j.mcpro.2025.101080_bib24) 2020; 184 Scaffidi (10.1016/j.mcpro.2025.101080_bib44) 2016; 1859 Rojas Ramirez (10.1016/j.mcpro.2025.101080_bib32) 2025 Ma (10.1016/j.mcpro.2025.101080_bib39) 2024; 20 Knorlein (10.1016/j.mcpro.2025.101080_bib3) 2023; 9 Vignali (10.1016/j.mcpro.2025.101080_bib43) 1998; 5 Colaert (10.1016/j.mcpro.2025.101080_bib17) 2011; 10 Chick (10.1016/j.mcpro.2025.101080_bib19) 2015; 33 Kouzarides (10.1016/j.mcpro.2025.101080_bib48) 2007; 128 Li (10.1016/j.mcpro.2025.101080_bib8) 2024; 124 Chan (10.1016/j.mcpro.2025.101080_bib1) 2020; 45 Keller (10.1016/j.mcpro.2025.101080_bib30) 2002; 74 Tan (10.1016/j.mcpro.2025.101080_bib21) 2011; 146 Scumaci (10.1016/j.mcpro.2025.101080_bib13) 2020; 9 Cain (10.1016/j.mcpro.2025.101080_bib36) 2014; 97 Zhang (10.1016/j.mcpro.2025.101080_bib20) 2019; 574 da Veiga Leprevost (10.1016/j.mcpro.2025.101080_bib29) 2020; 17 Noberini (10.1016/j.mcpro.2025.101080_bib46) 2020; 21 Wisniewski (10.1016/j.mcpro.2025.101080_bib12) 2007; 6 Noberini (10.1016/j.mcpro.2025.101080_bib23) 2019; 11 Vai (10.1016/j.mcpro.2025.101080_bib15) 2024; 23 Bannister (10.1016/j.mcpro.2025.101080_bib2) 2011; 21 Herwig-Carl (10.1016/j.mcpro.2025.101080_bib34) 2024; 65 Jiang (10.1016/j.mcpro.2025.101080_bib41) 2007; 104 Nesvizhskii (10.1016/j.mcpro.2025.101080_bib16) 2010; 73 Hijazi (10.1016/j.mcpro.2025.101080_bib52) 2025; 24 Shi (10.1016/j.mcpro.2025.101080_bib4) 2024; 81 Deng (10.1016/j.mcpro.2025.101080_bib6) 2025; 16 Mir (10.1016/j.mcpro.2025.101080_bib53) 2021; 31 Yu (10.1016/j.mcpro.2025.101080_bib31) 2021; 20 Yang (10.1016/j.mcpro.2025.101080_bib5) 2022; 18 Dai (10.1016/j.mcpro.2025.101080_bib49) 2024; 9 Searfoss (10.1016/j.mcpro.2025.101080_bib14) 2023; 34 Gao (10.1016/j.mcpro.2025.101080_bib38) 2023; 9 Kong (10.1016/j.mcpro.2025.101080_bib28) 2017; 14 Yao (10.1016/j.mcpro.2025.101080_bib50) 2024; 9 Zheng (10.1016/j.mcpro.2025.101080_bib9) 2019; 10 Andres (10.1016/j.mcpro.2025.101080_bib45) 2020; 21 Moradian (10.1016/j.mcpro.2025.101080_bib10) 2014; 14 Cole (10.1016/j.mcpro.2025.101080_bib54) 2019; 33 Takino (10.1016/j.mcpro.2025.101080_bib40) 2010; 45 Robusti (10.1016/j.mcpro.2025.101080_bib11) 2022; 14 Noberini (10.1016/j.mcpro.2025.101080_bib25) 2023; 2603 Macek (10.1016/j.mcpro.2025.101080_bib37) 2019; 17 Huang (10.1016/j.mcpro.2025.101080_bib22) 2018; 9 Perez-Riverol (10.1016/j.mcpro.2025.101080_bib55) 2025; 53 Shevchenko (10.1016/j.mcpro.2025.101080_bib27) 2006; 1 Doellinger (10.1016/j.mcpro.2025.101080_bib35) 2020; 19 MacDonald (10.1016/j.mcpro.2025.101080_bib51) 2024; 84 Allfrey (10.1016/j.mcpro.2025.101080_bib47) 1964; 51 Provez (10.1016/j.mcpro.2025.101080_bib42) 2022; 9 Yu (10.1016/j.mcpro.2025.101080_bib18) 2020; 11 Noberini (10.1016/j.mcpro.2025.101080_bib26) 2021; 13 Meert (10.1016/j.mcpro.2025.101080_bib33) 2015; 15 |
| References_xml | – volume: 45 start-page: 829 year: 2020 end-page: 844 ident: bib1 article-title: Nothing is yet set in (Hi)stone: novel post-translational modifications regulating chromatin function publication-title: Trends Biochem. Sci. – volume: 11 start-page: 4065 year: 2020 ident: bib18 article-title: Identification of modified peptides using localization-aware open search publication-title: Nat. Commun. – volume: 128 start-page: 693 year: 2007 end-page: 705 ident: bib48 article-title: Chromatin modifications and their function publication-title: Cell – volume: 14 start-page: 145 year: 2022 ident: bib11 article-title: Investigating pathological epigenetic aberrations by epi-proteomics publication-title: Clin. Epigenetics – volume: 51 start-page: 786 year: 1964 end-page: 794 ident: bib47 article-title: Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 33 start-page: 897 year: 2019 end-page: 906 ident: bib54 article-title: Comparison of data-acquisition methods for the identification and quantification of histone post-translational modifications on a Q exactive HF hybrid quadrupole orbitrap mass spectrometer publication-title: Rapid Commun. Mass Spectrom. – volume: 73 start-page: 2092 year: 2010 end-page: 2123 ident: bib16 article-title: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics publication-title: J. Proteomics – volume: 16 start-page: 59 year: 2025 ident: bib7 article-title: Histone lactylation promotes multidrug resistance in hepatocellular carcinoma by forming a positive feedback loop with PTEN publication-title: Cell Death Dis. – volume: 45 start-page: 646 year: 2010 end-page: 655 ident: bib40 article-title: The formation of intracellular glyceraldehyde-derived advanced glycation end-products and cytotoxicity publication-title: J. Gastroenterol. – volume: 146 start-page: 1016 year: 2011 end-page: 1028 ident: bib21 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell – volume: 81 start-page: 76 year: 2024 ident: bib4 article-title: A glimpse into novel acylations and their emerging role in regulating cancer metastasis publication-title: Cell Mol. Life Sci. – volume: 184 start-page: 19 year: 2020 end-page: 28 ident: bib24 article-title: Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications publication-title: Methods – volume: 1 start-page: 2856 year: 2006 end-page: 2860 ident: bib27 article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes publication-title: Nat. Protoc. – volume: 15 start-page: 2966 year: 2015 end-page: 2971 ident: bib33 article-title: Pitfalls in histone propionylation during bottom-up mass spectrometry analysis publication-title: Proteomics – volume: 14 start-page: 489 year: 2014 end-page: 497 ident: bib10 article-title: The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications publication-title: Proteomics – volume: 65 start-page: 27 year: 2024 ident: bib34 article-title: Mass spectrometry-based profiling of histone post-translational modifications in uveal melanoma tissues, human melanocytes, and uveal melanoma cell lines - a pilot study publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 21 year: 2020 ident: bib46 article-title: Label-free mass spectrometry-based quantification of linker histone H1 variants in clinical samples publication-title: Int. J. Mol. Sci. – volume: 18 start-page: 3470 year: 2022 end-page: 3483 ident: bib5 article-title: A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRbeta signaling drives clear cell renal cell carcinoma progression publication-title: Int. J. Biol. Sci. – volume: 16 start-page: 193 year: 2025 ident: bib6 article-title: Histone lactylation enhances GCLC expression and thus promotes chemoresistance of colorectal cancer stem cells through inhibiting ferroptosis publication-title: Cell Death Dis. – volume: 6 start-page: 72 year: 2007 end-page: 87 ident: bib12 article-title: Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue publication-title: Mol. Cell Proteomics – volume: 24 start-page: 2408 year: 2025 end-page: 2418 ident: bib52 article-title: Mind your spectra: points to be aware of when validating the identification of isobaric histone peptidoforms publication-title: J. Proteome Res. – volume: 21 year: 2020 ident: bib45 article-title: Histone H1 post-translational modifications: update and future perspectives publication-title: Int. J. Mol. Sci. – volume: 23 year: 2024 ident: bib15 article-title: Improved mass spectrometry-based methods reveal abundant propionylation and tissue-specific histone propionylation profiles publication-title: Mol. Cell Proteomics – volume: 84 start-page: 1377 year: 2024 end-page: 1391.e1376 ident: bib51 article-title: The proteomic landscape of genotoxic stress-induced micronuclei publication-title: Mol. Cell – volume: 33 start-page: 743 year: 2015 end-page: 749 ident: bib19 article-title: A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides publication-title: Nat. Biotechnol. – volume: 104 start-page: 60 year: 2007 end-page: 65 ident: bib41 article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 410 year: 2023 end-page: 420 ident: bib3 article-title: Leveraging histone glycation for cancer diagnostics and therapeutics publication-title: Trends Cancer – volume: 34 start-page: 2508 year: 2023 end-page: 2517 ident: bib14 article-title: An optimized and high-throughput method for histone propionylation and data-independent acquisition analysis for the identification and quantification of histone post-translational modifications publication-title: J. Am. Soc. Mass Spectrom. – year: 2025 ident: bib32 article-title: A new detailed mass offset search in MSFragger for improved interpretation of complex PTMs publication-title: bioRxiv – volume: 14 start-page: 513 year: 2017 end-page: 520 ident: bib28 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics publication-title: Nat. Methods – volume: 9 start-page: 3374 year: 2018 ident: bib22 article-title: Lysine benzoylation is a histone mark regulated by SIRT2 publication-title: Nat. Commun. – volume: 19 start-page: 209 year: 2020 end-page: 222 ident: bib35 article-title: Sample preparation by easy extraction and digestion (SPEED) - a universal, rapid, and detergent-free protocol for proteomics based on acid extraction publication-title: Mol. Cell Proteomics – volume: 574 start-page: 575 year: 2019 end-page: 580 ident: bib20 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature – volume: 20 start-page: 3760 year: 2024 end-page: 3772 ident: bib39 article-title: CHHM: a manually curated catalogue of human histone modifications revealing hotspot regions and unique distribution patterns publication-title: Int. J. Biol. Sci. – volume: 5 start-page: 1025 year: 1998 end-page: 1028 ident: bib43 article-title: Location and function of linker histones publication-title: Nat. Struct. Biol. – volume: 9 year: 2020 ident: bib13 article-title: DJ-1 proteoforms in breast cancer cells: the escape of metabolic epigenetic misregulation publication-title: Cells – volume: 17 start-page: 869 year: 2020 end-page: 870 ident: bib29 article-title: Philosopher: a versatile toolkit for shotgun proteomics data analysis publication-title: Nat. Methods – volume: 53 start-page: D543 year: 2025 end-page: D553 ident: bib55 article-title: The PRIDE database at 20 years: 2025 update publication-title: Nucleic Acids Res. – volume: 20 year: 2021 ident: bib31 article-title: IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs publication-title: Mol. Cell Proteomics – volume: 74 start-page: 5383 year: 2002 end-page: 5392 ident: bib30 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Anal. Chem. – volume: 9 year: 2023 ident: bib38 article-title: Identification of 113 new histone marks by CHiMA, a tailored database search strategy publication-title: Sci. Adv. – volume: 10 start-page: 1289 year: 2019 ident: bib9 article-title: Reversible histone glycation is associated with disease-related changes in chromatin architecture publication-title: Nat. Commun. – volume: 9 start-page: 332 year: 2024 ident: bib49 article-title: Epigenetics-targeted drugs: current paradigms and future challenges publication-title: Signal. Transduct. Target. Ther. – volume: 1859 start-page: 533 year: 2016 end-page: 539 ident: bib44 article-title: Histone H1 alterations in cancer publication-title: Biochim. Biophys. Acta – volume: 17 start-page: 651 year: 2019 end-page: 664 ident: bib37 article-title: Protein post-translational modifications in bacteria publication-title: Nat. Rev. Microbiol. – volume: 124 year: 2024 ident: bib8 article-title: Histone H4K12 lactylation promotes malignancy progression in triple-negative breast cancer through SLFN5 downregulation publication-title: Cell Signal. – volume: 10 start-page: 5555 year: 2011 end-page: 5561 ident: bib17 article-title: Analysis of the resolution limitations of peptide identification algorithms publication-title: J. Proteome Res. – volume: 9 start-page: 232 year: 2024 ident: bib50 article-title: Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases publication-title: Signal. Transduct. Target. Ther. – volume: 31 start-page: 1072 year: 2021 end-page: 1079 ident: bib53 article-title: Recent advances in histone glycation: emerging role in diabetes and cancer publication-title: Glycobiology – volume: 97 start-page: 265 year: 2014 end-page: 286 ident: bib36 article-title: Beyond gene expression: the impact of protein post-translational modifications in bacteria publication-title: J. Proteomics – volume: 21 start-page: 381 year: 2011 end-page: 395 ident: bib2 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. – volume: 9 start-page: 626 year: 2022 ident: bib42 article-title: An interactive mass spectrometry atlas of histone posttranslational modifications in T-cell acute leukemia publication-title: Sci. Data – volume: 11 year: 2019 ident: bib23 article-title: Profiling of epigenetic features in clinical samples reveals novel widespread changes in cancer publication-title: Cancers (Basel) – volume: 13 start-page: 145 year: 2021 ident: bib26 article-title: Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples publication-title: Clin. Epigenetics – volume: 2603 start-page: 87 year: 2023 end-page: 102 ident: bib25 article-title: A Super-SILAC approach for profiling histone posttranslational modifications publication-title: Methods Mol. Biol. – volume: 146 start-page: 1016 year: 2011 ident: 10.1016/j.mcpro.2025.101080_bib21 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 51 start-page: 786 year: 1964 ident: 10.1016/j.mcpro.2025.101080_bib47 article-title: Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.51.5.786 – volume: 14 start-page: 489 year: 2014 ident: 10.1016/j.mcpro.2025.101080_bib10 article-title: The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications publication-title: Proteomics doi: 10.1002/pmic.201300256 – volume: 11 start-page: 723 year: 2019 ident: 10.1016/j.mcpro.2025.101080_bib23 article-title: Profiling of epigenetic features in clinical samples reveals novel widespread changes in cancer publication-title: Cancers (Basel) doi: 10.3390/cancers11050723 – volume: 45 start-page: 646 year: 2010 ident: 10.1016/j.mcpro.2025.101080_bib40 article-title: The formation of intracellular glyceraldehyde-derived advanced glycation end-products and cytotoxicity publication-title: J. Gastroenterol. doi: 10.1007/s00535-009-0193-9 – volume: 9 start-page: 3374 year: 2018 ident: 10.1016/j.mcpro.2025.101080_bib22 article-title: Lysine benzoylation is a histone mark regulated by SIRT2 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05567-w – volume: 1859 start-page: 533 year: 2016 ident: 10.1016/j.mcpro.2025.101080_bib44 article-title: Histone H1 alterations in cancer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.09.008 – volume: 19 start-page: 209 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib35 article-title: Sample preparation by easy extraction and digestion (SPEED) - a universal, rapid, and detergent-free protocol for proteomics based on acid extraction publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.TIR119.001616 – volume: 1 start-page: 2856 year: 2006 ident: 10.1016/j.mcpro.2025.101080_bib27 article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.468 – volume: 15 start-page: 2966 year: 2015 ident: 10.1016/j.mcpro.2025.101080_bib33 article-title: Pitfalls in histone propionylation during bottom-up mass spectrometry analysis publication-title: Proteomics doi: 10.1002/pmic.201400569 – volume: 81 start-page: 76 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib4 article-title: A glimpse into novel acylations and their emerging role in regulating cancer metastasis publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-023-05104-z – year: 2025 ident: 10.1016/j.mcpro.2025.101080_bib32 article-title: A new detailed mass offset search in MSFragger for improved interpretation of complex PTMs publication-title: bioRxiv – volume: 23 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib15 article-title: Improved mass spectrometry-based methods reveal abundant propionylation and tissue-specific histone propionylation profiles publication-title: Mol. Cell Proteomics doi: 10.1016/j.mcpro.2024.100799 – volume: 24 start-page: 2408 year: 2025 ident: 10.1016/j.mcpro.2025.101080_bib52 article-title: Mind your spectra: points to be aware of when validating the identification of isobaric histone peptidoforms publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.4c01056 – volume: 31 start-page: 1072 year: 2021 ident: 10.1016/j.mcpro.2025.101080_bib53 article-title: Recent advances in histone glycation: emerging role in diabetes and cancer publication-title: Glycobiology doi: 10.1093/glycob/cwab011 – volume: 9 start-page: 410 year: 2023 ident: 10.1016/j.mcpro.2025.101080_bib3 article-title: Leveraging histone glycation for cancer diagnostics and therapeutics publication-title: Trends Cancer doi: 10.1016/j.trecan.2023.01.005 – volume: 73 start-page: 2092 year: 2010 ident: 10.1016/j.mcpro.2025.101080_bib16 article-title: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics publication-title: J. Proteomics doi: 10.1016/j.jprot.2010.08.009 – volume: 53 start-page: D543 year: 2025 ident: 10.1016/j.mcpro.2025.101080_bib55 article-title: The PRIDE database at 20 years: 2025 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkae1011 – volume: 16 start-page: 193 year: 2025 ident: 10.1016/j.mcpro.2025.101080_bib6 article-title: Histone lactylation enhances GCLC expression and thus promotes chemoresistance of colorectal cancer stem cells through inhibiting ferroptosis publication-title: Cell Death Dis. doi: 10.1038/s41419-025-07498-z – volume: 10 start-page: 1289 year: 2019 ident: 10.1016/j.mcpro.2025.101080_bib9 article-title: Reversible histone glycation is associated with disease-related changes in chromatin architecture publication-title: Nat. Commun. doi: 10.1038/s41467-019-09192-z – volume: 14 start-page: 513 year: 2017 ident: 10.1016/j.mcpro.2025.101080_bib28 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics publication-title: Nat. Methods doi: 10.1038/nmeth.4256 – volume: 20 year: 2021 ident: 10.1016/j.mcpro.2025.101080_bib31 article-title: IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs publication-title: Mol. Cell Proteomics doi: 10.1016/j.mcpro.2021.100077 – volume: 21 start-page: 7330 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib46 article-title: Label-free mass spectrometry-based quantification of linker histone H1 variants in clinical samples publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21197330 – volume: 13 start-page: 145 year: 2021 ident: 10.1016/j.mcpro.2025.101080_bib26 article-title: Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples publication-title: Clin. Epigenetics doi: 10.1186/s13148-021-01120-7 – volume: 33 start-page: 743 year: 2015 ident: 10.1016/j.mcpro.2025.101080_bib19 article-title: A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3267 – volume: 9 start-page: 332 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib49 article-title: Epigenetics-targeted drugs: current paradigms and future challenges publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-024-02039-0 – volume: 16 start-page: 59 year: 2025 ident: 10.1016/j.mcpro.2025.101080_bib7 article-title: Histone lactylation promotes multidrug resistance in hepatocellular carcinoma by forming a positive feedback loop with PTEN publication-title: Cell Death Dis. doi: 10.1038/s41419-025-07359-9 – volume: 11 start-page: 4065 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib18 article-title: Identification of modified peptides using localization-aware open search publication-title: Nat. Commun. doi: 10.1038/s41467-020-17921-y – volume: 21 start-page: 381 year: 2011 ident: 10.1016/j.mcpro.2025.101080_bib2 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. doi: 10.1038/cr.2011.22 – volume: 9 start-page: 232 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib50 article-title: Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-024-01918-w – volume: 10 start-page: 5555 year: 2011 ident: 10.1016/j.mcpro.2025.101080_bib17 article-title: Analysis of the resolution limitations of peptide identification algorithms publication-title: J. Proteome Res. doi: 10.1021/pr200913a – volume: 2603 start-page: 87 year: 2023 ident: 10.1016/j.mcpro.2025.101080_bib25 article-title: A Super-SILAC approach for profiling histone posttranslational modifications publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2863-8_7 – volume: 5 start-page: 1025 year: 1998 ident: 10.1016/j.mcpro.2025.101080_bib43 article-title: Location and function of linker histones publication-title: Nat. Struct. Biol. doi: 10.1038/4133 – volume: 34 start-page: 2508 year: 2023 ident: 10.1016/j.mcpro.2025.101080_bib14 article-title: An optimized and high-throughput method for histone propionylation and data-independent acquisition analysis for the identification and quantification of histone post-translational modifications publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.3c00223 – volume: 97 start-page: 265 year: 2014 ident: 10.1016/j.mcpro.2025.101080_bib36 article-title: Beyond gene expression: the impact of protein post-translational modifications in bacteria publication-title: J. Proteomics doi: 10.1016/j.jprot.2013.08.012 – volume: 84 start-page: 1377 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib51 article-title: The proteomic landscape of genotoxic stress-induced micronuclei publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.02.001 – volume: 18 start-page: 3470 year: 2022 ident: 10.1016/j.mcpro.2025.101080_bib5 article-title: A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRbeta signaling drives clear cell renal cell carcinoma progression publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.73398 – volume: 20 start-page: 3760 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib39 article-title: CHHM: a manually curated catalogue of human histone modifications revealing hotspot regions and unique distribution patterns publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.95954 – volume: 45 start-page: 829 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib1 article-title: Nothing is yet set in (Hi)stone: novel post-translational modifications regulating chromatin function publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.05.009 – volume: 104 start-page: 60 year: 2007 ident: 10.1016/j.mcpro.2025.101080_bib41 article-title: N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606775103 – volume: 574 start-page: 575 year: 2019 ident: 10.1016/j.mcpro.2025.101080_bib20 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 9 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib13 article-title: DJ-1 proteoforms in breast cancer cells: the escape of metabolic epigenetic misregulation publication-title: Cells doi: 10.3390/cells9091968 – volume: 9 year: 2023 ident: 10.1016/j.mcpro.2025.101080_bib38 article-title: Identification of 113 new histone marks by CHiMA, a tailored database search strategy publication-title: Sci. Adv. doi: 10.1126/sciadv.adf1416 – volume: 74 start-page: 5383 year: 2002 ident: 10.1016/j.mcpro.2025.101080_bib30 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Anal. Chem. doi: 10.1021/ac025747h – volume: 6 start-page: 72 year: 2007 ident: 10.1016/j.mcpro.2025.101080_bib12 article-title: Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M600255-MCP200 – volume: 9 start-page: 626 year: 2022 ident: 10.1016/j.mcpro.2025.101080_bib42 article-title: An interactive mass spectrometry atlas of histone posttranslational modifications in T-cell acute leukemia publication-title: Sci. Data doi: 10.1038/s41597-022-01736-1 – volume: 14 start-page: 145 year: 2022 ident: 10.1016/j.mcpro.2025.101080_bib11 article-title: Investigating pathological epigenetic aberrations by epi-proteomics publication-title: Clin. Epigenetics doi: 10.1186/s13148-022-01371-y – volume: 33 start-page: 897 year: 2019 ident: 10.1016/j.mcpro.2025.101080_bib54 article-title: Comparison of data-acquisition methods for the identification and quantification of histone post-translational modifications on a Q exactive HF hybrid quadrupole orbitrap mass spectrometer publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8401 – volume: 17 start-page: 651 year: 2019 ident: 10.1016/j.mcpro.2025.101080_bib37 article-title: Protein post-translational modifications in bacteria publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0243-0 – volume: 124 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib8 article-title: Histone H4K12 lactylation promotes malignancy progression in triple-negative breast cancer through SLFN5 downregulation publication-title: Cell Signal. doi: 10.1016/j.cellsig.2024.111468 – volume: 17 start-page: 869 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib29 article-title: Philosopher: a versatile toolkit for shotgun proteomics data analysis publication-title: Nat. Methods doi: 10.1038/s41592-020-0912-y – volume: 128 start-page: 693 year: 2007 ident: 10.1016/j.mcpro.2025.101080_bib48 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 65 start-page: 27 year: 2024 ident: 10.1016/j.mcpro.2025.101080_bib34 article-title: Mass spectrometry-based profiling of histone post-translational modifications in uveal melanoma tissues, human melanocytes, and uveal melanoma cell lines - a pilot study publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.65.2.27 – volume: 21 start-page: 5941 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib45 article-title: Histone H1 post-translational modifications: update and future perspectives publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21165941 – volume: 184 start-page: 19 year: 2020 ident: 10.1016/j.mcpro.2025.101080_bib24 article-title: Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications publication-title: Methods doi: 10.1016/j.ymeth.2019.10.001 |
| SSID | ssj0020175 |
| Score | 2.4840782 |
| Snippet | Histone post-translational modifications (PTMs) play a crucial role in regulating gene expression and maintaining DNA integrity, and their aberrations are... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 101080 |
| SubjectTerms | bioinformatics workflow epigenetics histone PTM discovery mass spectrometry post-translational modifications |
| Title | Breaking Boundaries in Histone Modification MS-Based Detection: A Tailored Search Strategy for Unrestricted Identification of Novel Epigenetic Marks |
| URI | https://dx.doi.org/10.1016/j.mcpro.2025.101080 https://www.ncbi.nlm.nih.gov/pubmed/41038282 https://www.proquest.com/docview/3256808335 |
| Volume | 24 |
| WOSCitedRecordID | wos001612017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1535-9484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020175 issn: 1535-9476 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l5aFeELQ8wqNaJMSlOFqvvX5wS1CBS6tKpCg3y2uvJVeJEyVp1PI7-Fn8KGb24QSiIDhwsRJvso7zfTs7M54HIW_igvllhH63ghVeWMJKz4VMvJKJUviJzKuc6WYT8fl5MhqlF53OD5cLsxrHTZPc3KSz_wo1nAOwMXX2H-BuJ4UT8BpAhyPADse_An4AaiD6v08GumMSmsLo1ND1QBpcxCVGBxncz754A9jGMBh5qWOyGpOpPsxrsONRFzVOEVvD1gR3XmKFICzsj8qqSfRtJ0T_w3SlxienMyzziRmSOh1osakEn7mWvJp3-OhAv9ElIzBJulXzv5pe2f0x9mnBygqt6xrjwWvdjcrGhre7y6d5_q3OS1W34Zrt0AWY8dZXbDLrrSPXOj24sNl_es9yglp4qamD2kpyk43tGOtvyGUQPMx0jNraMoz34qo3KeA2e3ix3van4c-fTTRhQqwoz03DpN8qdbuhPXKHxyJNnYFvzX-QfcLVvdIRhltXPCD33Ry71KRdZpBWh4YPyQNrx9C-4d8j0lHNITnqN_lyOrmlb6mOLNaPbA7JPdPw9PaIfHfkpGty0rqhlpx0k5zUkZO25HxP-9RRkxpqUkdNCtSkm9Skv1KTTiuqqUnX1KSamo_J5cfT4YfPnu0L4hWgTC29kKuQFyqveFRKGUmJZkAsVQDGciW4UkyFgssAuJYy6YcxlymHsaAo41AEUfCE7DdwU88IjQJWVjKPo8pHTwNLqygsVMBZUsiKi7RL3jkYspkp_5K5uMirTAOYIYCZAbBLIgdVZjVYo5lmwLY_f_G1AzYD-Y4rL2_U9HqRBWCTJAxTI7vkqUG8_SWOLM93jrwgB-vl85LsL-fX6hW5W6yW9WJ-TPbiUXKsWfoTmcfO7Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+Boundaries+in+Histone+Modification+MS-Based+Detection%3A+A+Tailored+Search+Strategy+for+Unrestricted+Identification+of+Novel+Epigenetic+Marks&rft.jtitle=Molecular+%26+cellular+proteomics&rft.au=Vai%2C+Alessandro&rft.au=Noberini%2C+Roberta&rft.au=Graziadei%2C+Andrea&rft.au=Polasky%2C+Daniel+A&rft.date=2025-11-01&rft.eissn=1535-9484&rft.volume=24&rft.issue=11&rft.spage=101080&rft_id=info:doi/10.1016%2Fj.mcpro.2025.101080&rft_id=info%3Apmid%2F41038282&rft.externalDocID=41038282 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9476&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9476&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9476&client=summon |