FIRST AND SECOND ORDER SUFFICIENT CONDITIONS FOR STRICT MINIMALITY IN MULTIOBJECTIVE PROGRAMMING

In this paper, first and second order sufficient conditions are established for strict local Pareto minima of orders 1 and 2 to multiobjective optimization problems with an arbitrary feasible set and a twice differentiable objective function are provided. For this aim, the concept of support functio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 23; číslo 3-4; s. 303 - 322
Hlavní autoři: Jiménez, Bienvenido, Novo, Vicente
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 09.01.2002
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, first and second order sufficient conditions are established for strict local Pareto minima of orders 1 and 2 to multiobjective optimization problems with an arbitrary feasible set and a twice differentiable objective function are provided. For this aim, the concept of support function to a multiobjective problem is introduced, so that the scalar case in particular is contained. The obtained results generalize the classical ones of this case. Furthermore, particularizing to a feasible set defined by equality and inequality constraints, first and second order optimality conditions in primal form as well as dual form (by means of a Lagrange multiplier rule) are obtained.
ISSN:0163-0563
1532-2467
DOI:10.1081/NFA-120006695