High-Performance Sequential Analysis in Grid Automated Systems of Distributed-Generation Areas
This paper analyzes the electrical parameters of areas that contain distributed generation facilities. It demonstrates the necessity of stricter requirements to the performance of energy system automated systems, especially in island operation. It is noted that implementing a special procedure for t...
Uloženo v:
| Vydáno v: | Russian electrical engineering Ročník 92; číslo 2; s. 90 - 96 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.02.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1068-3712, 1934-8010 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper analyzes the electrical parameters of areas that contain distributed generation facilities. It demonstrates the necessity of stricter requirements to the performance of energy system automated systems, especially in island operation. It is noted that implementing a special procedure for truncating the standard sequential analysis (Wald analysis) for automated decision-making is a time-consuming process. By ensuring the constancy of first- and second-kind errors at each step of the Wald analysis, one can generate adaptable settings. The paper uses evidence from an automated underfrequency load shedding unit to show that a modified sequential analysis algorithm performs twice as fast. The authors present guidelines on how to adopt this modified algorithm in existing or newly developed energy system automated systems. |
|---|---|
| AbstractList | This paper analyzes the electrical parameters of areas that contain distributed generation facilities. It demonstrates the necessity of stricter requirements to the performance of energy system automated systems, especially in island operation. It is noted that implementing a special procedure for truncating the standard sequential analysis (Wald analysis) for automated decision-making is a time-consuming process. By ensuring the constancy of first- and second-kind errors at each step of the Wald analysis, one can generate adaptable settings. The paper uses evidence from an automated underfrequency load shedding unit to show that a modified sequential analysis algorithm performs twice as fast. The authors present guidelines on how to adopt this modified algorithm in existing or newly developed energy system automated systems. |
| Author | Kulikov, A. L. Ilyushin, P. V. Loskutov, A. A. |
| Author_xml | – sequence: 1 givenname: A. L. surname: Kulikov fullname: Kulikov, A. L. email: journal-elektrotechnika@mail.ru organization: Alekseev Nizhny Novgorod State Technical University – sequence: 2 givenname: P. V. surname: Ilyushin fullname: Ilyushin, P. V. organization: Energy Research Institute, Russian Academy of Sciences – sequence: 3 givenname: A. A. surname: Loskutov fullname: Loskutov, A. A. organization: Alekseev Nizhny Novgorod State Technical University |
| BookMark | eNp9kEtLAzEUhYNUsK3-AHcB16N5zSPLUrUVCgrVrUNm5k5NmUlqkln035taQVB0dS_nnu9yOBM0MtYAQpeUXHNK-M2akqzgOWWMEkZIzk_QmEoukoJQMop7PCeH-xmaeL8lJM2YEGP0utSbt-QJXGtdr0wNeA3vA5igVYdnRnV7rz3WBi-cbvBsCLZXARq83vsAvce2xbfaB6erIcrJAgw4FbQ1eOZA-XN02qrOw8XXnKKX-7vn-TJZPS4e5rNVUrNC8ITxXKYsVzxvVFZXtFVSMVkJwkAplfMoUUFFlEjLq4aBBCkalracSplmKZ-iq-PfnbMxvg_l1g4uxvclSxkTsRBSRFd-dNXOeu-gLWsdPtMGp3RXUlIeyix_lRlJ-oPcOd0rt_-XYUfGR6_ZgPvO9Df0AVPIhkM |
| CitedBy_id | crossref_primary_10_1051_e3sconf_202458401008 crossref_primary_10_3103_S1068371223070088 crossref_primary_10_3390_en15228448 crossref_primary_10_3390_math10101768 |
| Cites_doi | 10.1007/BF00587355 10.1137/1110078 10.1214/aoms/1177705996 10.1109/EPEPEMC.2014.6980544 10.1109/CVPR.2005.373 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2021. ISSN 1068-3712, Russian Electrical Engineering, 2021, Vol. 92, No. 2, pp. 90–96. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Elektrotekhnika, 2021, No. 2, pp. 34–41. |
| Copyright_xml | – notice: Allerton Press, Inc. 2021. ISSN 1068-3712, Russian Electrical Engineering, 2021, Vol. 92, No. 2, pp. 90–96. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Elektrotekhnika, 2021, No. 2, pp. 34–41. |
| DBID | AAYXX CITATION |
| DOI | 10.3103/S1068371221020073 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1934-8010 |
| EndPage | 96 |
| ExternalDocumentID | 10_3103_S1068371221020073 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9P PF0 PT4 QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7R Z7S Z7X Z7Y Z7Z ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c2843-2379527a37da6cb1fa9a29b402eaaa73cb1141429b0f3bd2e9e94d25f31995653 |
| IEDL.DBID | RSV |
| ISSN | 1068-3712 |
| IngestDate | Thu Sep 25 00:56:18 EDT 2025 Tue Nov 18 21:23:09 EST 2025 Sat Nov 29 03:06:36 EST 2025 Fri Feb 21 02:48:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | power area distributed generation modified algorithm energy system automated system underfrequency load-shedding Wald sequential analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2843-2379527a37da6cb1fa9a29b402eaaa73cb1141429b0f3bd2e9e94d25f31995653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2522407308 |
| PQPubID | 2044411 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2522407308 crossref_citationtrail_10_3103_S1068371221020073 crossref_primary_10_3103_S1068371221020073 springer_journals_10_3103_S1068371221020073 |
| PublicationCentury | 2000 |
| PublicationDate | 20210200 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Russian electrical engineering |
| PublicationTitleAbbrev | Russ. Electr. Engin |
| PublicationYear | 2021 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Bussgang, J.J. and Marcus, M.B., Truncated Sequential Hypothesis Tests: Memorandum RM-4268-APRA, Santa Monica, CA: Rand Corp., 1964. WaldA.Sequential Analysis1947New YorkWiley0029.15805 Aivazyan, S.A., Distinguishing of close hypotheses about the fensity of the distribution in the scheme of the generalized sequential criterion, Teor. Veroyatn. Ee Primen., 1965, vol. 10, no. 4. Anderson, T.W., A modification of the sequential probability ratio tests to reduce the sample size, Ann. Math. Stat., 1960, vol. 31. Davarifar, M., Rabhi, A., Hajjaji, A., and Daneshifar, Z., Real-time diagnosis of PV system by using the sequential probability ratio test (SPRT), Proc. 16th Int. Power Electronics and Motion Control Conf. and Exposition, Antalya, Turkey, September 21–24, 2014, Piscataway, NJ: Inst. Electr. Electron. Eng., 2014. Lorden, G., Structure of sequential tests minimizing an expected sample size, Z. Wahrscheinlichkeitstheor. Verw. Geb., 1980, vol. 51, no. 3. Kulikov, A.L. and Ilyushin, P.V., Application of the Wald sequential procedure for automatic control of the modes of power districts with distributed generation facilities, Energetik, 2019, no. 6. Basharinov, A.E. and Fleishman, B.S., Metody statisticheskogo posledovatel’nogo analiza i ikh radiotekhnicheskie prilozheniya (Statistical Sequential Analysis and Its Radio Engineering Application), Moscow: Sovetskoe Radio, 1962. Shiryaev, A.N., Statisticheskii posledovatel’nyi analiz. Optimal’nye pravila ostanovki (Statistical Sequential Analysis. Optimal Terminal Rules), Moscow: Nauka, 1976. Sochman, J. and Matas, J., Waldboost-learning for time constrained sequential detection, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Piscataway, NJ: Inst. Electr. Electron. Eng., 2005, vol. 2. FuK.-S.Sequential Methods in Pattern Recognition and Machine Learning1968AmsterdamElsevier0188.52303 K.-S. Fu (1360_CR11) 1968 A. Wald (1360_CR1) 1947 1360_CR7 1360_CR6 1360_CR10 1360_CR9 1360_CR8 1360_CR3 1360_CR2 1360_CR5 1360_CR4 |
| References_xml | – reference: Anderson, T.W., A modification of the sequential probability ratio tests to reduce the sample size, Ann. Math. Stat., 1960, vol. 31. – reference: Lorden, G., Structure of sequential tests minimizing an expected sample size, Z. Wahrscheinlichkeitstheor. Verw. Geb., 1980, vol. 51, no. 3. – reference: Basharinov, A.E. and Fleishman, B.S., Metody statisticheskogo posledovatel’nogo analiza i ikh radiotekhnicheskie prilozheniya (Statistical Sequential Analysis and Its Radio Engineering Application), Moscow: Sovetskoe Radio, 1962. – reference: FuK.-S.Sequential Methods in Pattern Recognition and Machine Learning1968AmsterdamElsevier0188.52303 – reference: Sochman, J. and Matas, J., Waldboost-learning for time constrained sequential detection, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Piscataway, NJ: Inst. Electr. Electron. Eng., 2005, vol. 2. – reference: Bussgang, J.J. and Marcus, M.B., Truncated Sequential Hypothesis Tests: Memorandum RM-4268-APRA, Santa Monica, CA: Rand Corp., 1964. – reference: Kulikov, A.L. and Ilyushin, P.V., Application of the Wald sequential procedure for automatic control of the modes of power districts with distributed generation facilities, Energetik, 2019, no. 6. – reference: WaldA.Sequential Analysis1947New YorkWiley0029.15805 – reference: Davarifar, M., Rabhi, A., Hajjaji, A., and Daneshifar, Z., Real-time diagnosis of PV system by using the sequential probability ratio test (SPRT), Proc. 16th Int. Power Electronics and Motion Control Conf. and Exposition, Antalya, Turkey, September 21–24, 2014, Piscataway, NJ: Inst. Electr. Electron. Eng., 2014. – reference: Aivazyan, S.A., Distinguishing of close hypotheses about the fensity of the distribution in the scheme of the generalized sequential criterion, Teor. Veroyatn. Ee Primen., 1965, vol. 10, no. 4. – reference: Shiryaev, A.N., Statisticheskii posledovatel’nyi analiz. Optimal’nye pravila ostanovki (Statistical Sequential Analysis. Optimal Terminal Rules), Moscow: Nauka, 1976. – ident: 1360_CR4 – ident: 1360_CR6 – ident: 1360_CR2 – volume-title: Sequential Methods in Pattern Recognition and Machine Learning year: 1968 ident: 1360_CR11 – ident: 1360_CR8 doi: 10.1007/BF00587355 – ident: 1360_CR9 doi: 10.1137/1110078 – volume-title: Sequential Analysis year: 1947 ident: 1360_CR1 – ident: 1360_CR5 doi: 10.1214/aoms/1177705996 – ident: 1360_CR10 – ident: 1360_CR3 doi: 10.1109/EPEPEMC.2014.6980544 – ident: 1360_CR7 doi: 10.1109/CVPR.2005.373 |
| SSID | ssj0056244 |
| Score | 2.1529186 |
| Snippet | This paper analyzes the electrical parameters of areas that contain distributed generation facilities. It demonstrates the necessity of stricter requirements... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 90 |
| SubjectTerms | Algorithms Automation Decision analysis Decision making Distributed generation Engineering Load shedding Machines Manufacturing Processes Sequential analysis |
| Title | High-Performance Sequential Analysis in Grid Automated Systems of Distributed-Generation Areas |
| URI | https://link.springer.com/article/10.3103/S1068371221020073 https://www.proquest.com/docview/2522407308 |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1934-8010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056244 issn: 1068-3712 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBw4gSrapGmb48TzNE0M0E5UaZpIk1CH1o3fj5O2jLcE18ZJKieO88nOZ4BjYxLFfYkgB32RF0YqQpPS3NLdBYmKkljkiSs2Efd6yXAo-vU77rLJdm9Cku6kdrjSZ2cDBC-IpgJqQYoNMC3CEnq7xFrj7eChOX7Rn7sKrlbas-JVKPP7IT46o_kN81NQ1Pmaq_V__eUGrNVXS9Kt9sImLOhiC1bfEQ5uw6NN6_D688cCZOBSqdHMsWPNT0JGBbmejHLSnU3HeKHVOal5zcnYkAvLtGuLZOncqzir7dLirFqWO3B_dXl3fuPVFRY8hW6JeZTFgtNYsjiXkcoCI4WkIkNMqaWUMcNPQRigy8p8w7KcaqFFmFNumH3ZHXG2C61iXOg9IJLHLDB4QGSRCnFfCI7tRnCDutDUJG3wG1WnqqYft1UwnlKEIVZ16RfVteHkrctzxb3xm3CnWb-0NsMypdwhVubj9KfNes2bfxxs_0_SB7BCbaaLy-XuQGs6melDWFYv01E5OXK78xVcSdmo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3E6NQ8-KcU2adrmcahz4hzDTdmTJU0TGEgn6-bf7yVrnd-gr80lKZePy4-7-x1Cx1pHkrkCQA7YIscPZABHSjFDd-dFMohCnka22ETYbkf9Pu8Uedx5Ge1euiTtTW1xpUvPugBeAE15xIAU42CaRws-GCwTx3fXfSivX7DntoKrkXaM-NSV-f0QH43R7IX5ySlqbU1j7V9_uY5Wi6clrk_3wgaaU9kmWnlHOLiFHk1Yh9OZJQvgrg2lhmMOHQt-EjzI8NVokOL6ZDyEB61KccFrjocaXximXVMkS6XOlLPaLC3MqkS-je4bl73zplNUWHAkmCXqEBpyRkJBw1QEMvG04ILwBDClEkKEFD55vgcmK3E1TVKiuOJ-SpimJrM7YHQHVbJhpnYRFiyknoYLIgmkD_uCM2jXnGnQhSI6qiK3VHUsC_pxUwXjKQYYYlQXf1FdFZ28dXmecm_8Jlwr1y8ujmEeE2YRK3Vh-tNyvWbNPw629yfpI7TU7N224tZ1-2YfLRMT9WLjumuoMh5N1AFalC_jQT46tDv1FZkg3Iw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTBb3E6NQ8-KWVt0rTN43BORRmDqezJkuYDBtKNrfPv99IP5zeIr80lKXdJLj_u8juETo2JJHMFgBzwRY4fyAC2lGaW7s6LZBCFXEV5sYmw240GA94r65xOq2z3KiRZvGmwLE1p1hwr08wxpkubfQAygKw8YgGLDTYtoiXf1gyycL3_WB3F4Nvzaq5W2rHiRVjz-yE-Oqb5bfNTgDT3O52Nf__xJlovr5y4VayRLbSg02209o6IcAc92XQPpzd_RID7eYo1bH_oWPKW4GGKryZDhVuzbAQXXa1wyXeORwa3LQOvLZ6llVNwWVuTw6xaTHfRQ-fy_uLaKSsvOBLcFXUIDTkjoaChEoFMPCO4IDwBrKmFECGFT57vgStLXEMTRTTX3FeEGWpffAeM7qFaOkr1PsKChdQzcHAkgfRhvXAG7YYzA7rQxER15FZqj2VJS26rYzzHAE-s6uIvqqujs7cu44KT4zfhRmXLuNye05iwHMlSF6Y_r2w3b_5xsIM_SZ-glV67E9_ddG8P0SqxyTB5uncD1bLJTB-hZfmSDaeT43zRvgILhuVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Sequential+Analysis+in+Grid+Automated+Systems+of+Distributed-Generation+Areas&rft.jtitle=Russian+electrical+engineering&rft.au=Kulikov%2C+A.+L.&rft.au=Ilyushin%2C+P.+V.&rft.au=Loskutov%2C+A.+A.&rft.date=2021-02-01&rft.issn=1068-3712&rft.eissn=1934-8010&rft.volume=92&rft.issue=2&rft.spage=90&rft.epage=96&rft_id=info:doi/10.3103%2FS1068371221020073&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1068371221020073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-3712&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-3712&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-3712&client=summon |