Analytic approach to coset–leader decoding leads to extension of the Welch–Berlekamp theorem
This paper provides a complete proof of the Welch–Berlekamp theorem on which the Welch–Berlekamp algorithm was founded. By introducing an analytic approach to coset–leader decoders for Reed–Solomon codes, the Welch–Berlekamp key-equation of error corrections is enlarged and a complete proof of the W...
Uloženo v:
| Vydáno v: | Journal of statistical planning and inference Ročník 94; číslo 2; s. 371 - 380 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
01.04.2001
New York,NY Elsevier Science Amsterdam |
| Témata: | |
| ISSN: | 0378-3758, 1873-1171 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper provides a complete proof of the Welch–Berlekamp theorem on which the Welch–Berlekamp algorithm was founded. By introducing an analytic approach to coset–leader decoders for Reed–Solomon codes, the Welch–Berlekamp key-equation of error corrections is enlarged and a complete proof of the Welch–Berlekamp theorem is derived in a natural way, and the theorem is extended such that the BCH-bound constraint is moved. |
|---|---|
| ISSN: | 0378-3758 1873-1171 |
| DOI: | 10.1016/S0378-3758(00)00267-6 |