RadaRays: Real-Time Simulation of Rotating FMCW Radar for Mobile Robotics via Hardware-Accelerated Ray Tracing

RadaRays allows for the accurate modeling and simulation of rotating FMCW radar sensors in complex environments, including the simulation of reflection, refraction, and scattering of radar waves. Our software is able to handle large numbers of objects and materials in real-time, making it suitable f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 10; H. 3; S. 2470 - 2477
Hauptverfasser: Mock, Alexander, Magnusson, Martin, Hertzberg, Joachim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RadaRays allows for the accurate modeling and simulation of rotating FMCW radar sensors in complex environments, including the simulation of reflection, refraction, and scattering of radar waves. Our software is able to handle large numbers of objects and materials in real-time, making it suitable for use in a variety of mobile robotics applications. We demonstrate the effectiveness of RadaRays through a series of experiments and show that it can more accurately reproduce the behavior of FMCW radar sensors in a variety of environments, compared to the ray casting-based lidar-like simulations that are commonly used in simulators for autonomous driving such as CARLA. Our experiments additionally serve as a valuable reference point for researchers to evaluate their own radar simulations. By using RadaRays, developers can significantly reduce the time and cost associated with prototyping and testing FMCW radar-based algorithms. We also provide a Gazebo plugin that makes our work accessible to the mobile robotics community.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2025.3531689