A quasi-quadratic vertex-kernel for Cograph Edge Editing
We provide a O(k2logk) vertex kernel for cograph edge editing. This improves a cubic kernel found by Guillemot, Havet, Paul and Perez (Guillemot et al., 2010) which involved four reduction rules. We generalize one of their rules, based on packing of induced paths of length four, by introducing t-mod...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 357; s. 282 - 296 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.11.2024
Elsevier |
| Témata: | |
| ISSN: | 0166-218X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide a O(k2logk) vertex kernel for cograph edge editing. This improves a cubic kernel found by Guillemot, Havet, Paul and Perez (Guillemot et al., 2010) which involved four reduction rules. We generalize one of their rules, based on packing of induced paths of length four, by introducing t-modules, which are modules up to t edge modifications. The key fact is that large t-modules cannot be edited more than t times, and this allows to obtain a near quadratic kernel. The extra logk factor seems tricky to remove as it is necessary in the combinatorial lemma on trees which is central in our proof. Nevertheless, we think that a quadratic bound should be reachable. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2024.05.014 |