Defect correction and domain decomposition for second-order boundary value problems

Highly accurate approximation is obtained through the techniques of defect correction and domain decomposition for second-order elliptic boundary value problems on a disc. The basic solution is computed using the Schwarz domain decomposition procedure and bilinear Galerkin finite element approximati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 130; číslo 1; s. 41 - 51
Hlavní autor: Chibi, Ahmed-Salah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.05.2001
Elsevier
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Highly accurate approximation is obtained through the techniques of defect correction and domain decomposition for second-order elliptic boundary value problems on a disc. The basic solution is computed using the Schwarz domain decomposition procedure and bilinear Galerkin finite element approximation on each subdomain to get an O( h 2) accurate basic solution in higher-order discrete Sobolev norms. The defects are then computed using high-order polynomials (Lagrange polynomials or splines) to get as many O( h 2) corrections as possible.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(99)00392-1