MAE-CoReNet: Masking Autoencoder-Convolutional Reformer Net
Transformers are widely used in computer vision for feature extraction, object detection, and image classification. Many methods boost performance by adding convolutional or attention layers, yet large models cause high training costs. This manuscript suggests a Masking Autoencoder-Convolutional Ref...
Gespeichert in:
| Veröffentlicht in: | International journal of information system modeling and design Jg. 16; H. 1; S. 1 - 23 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hershey
IGI Global
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1947-8186, 1947-8194 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Transformers are widely used in computer vision for feature extraction, object detection, and image classification. Many methods boost performance by adding convolutional or attention layers, yet large models cause high training costs. This manuscript suggests a Masking Autoencoder-Convolutional Reformer Net (MAE-CoReNet) to enhance accuracy with less training time. It employs an attention mechanism with Locality-sensitive Hashing (LSH) to cut training time and increase classification accuracy. Also, it uses the masking technique for module pre-training to improve results. The experimental results show that the model in this manuscript performs well on the CIFAR-100 dataset. Compared to the Convolutional Attention Transformer Network (CoAtNet), MAE-CoReNet's convergence speed decreases from 65 to 25 epochs, and its accuracy increases from 53.1% to 90.2%. Additionally, when compared with other models on the ImageNet22k dataset, this model achieves the highest accuracy and fastest convergence speed. Its convergence speed is 55 epochs and the accuracy is 89.5%. |
|---|---|
| AbstractList | Transformers are widely used in computer vision for feature extraction, object detection, and image classification. Many methods boost performance by adding convolutional or attention layers, yet large models cause high training costs. This manuscript suggests a Masking Autoencoder-Convolutional Reformer Net (MAE-CoReNet) to enhance accuracy with less training time. It employs an attention mechanism with Locality-sensitive Hashing (LSH) to cut training time and increase classification accuracy. Also, it uses the masking technique for module pre-training to improve results. The experimental results show that the model in this manuscript performs well on the CIFAR-100 dataset. Compared to the Convolutional Attention Transformer Network (CoAtNet), MAE-CoReNet's convergence speed decreases from 65 to 25 epochs, and its accuracy increases from 53.1% to 90.2%. Additionally, when compared with other models on the ImageNet22k dataset, this model achieves the highest accuracy and fastest convergence speed. Its convergence speed is 55 epochs and the accuracy is 89.5%. |
| Author | Zhou, Yuyang Wang, Li Wang, Di |
| AuthorAffiliation | China Academy of Space Technology, China Xi'an Jiaotong University, China |
| AuthorAffiliation_xml | – name: China Academy of Space Technology, China – name: Xi'an Jiaotong University, China |
| Author_xml | – sequence: 1 givenname: Di surname: Wang fullname: Wang, Di organization: Xi'an Jiaotong University, China – sequence: 2 givenname: Li surname: Wang fullname: Wang, Li organization: Xi'an Jiaotong University, China – sequence: 3 givenname: Yuyang surname: Zhou fullname: Zhou, Yuyang organization: China Academy of Space Technology, China |
| BookMark | eNptkE1Lw0AQhhepYK09eg94Tt3vDz2VWLXSKlQ9L8lmU1LbbN1NBP-9K6l6cQ4zA_PwMjynYNC4xgJwjuCEQiQv5w_z5-XNhAhElDoCQ6SoSGXsg99d8hMwDmEDYzEqBONDcL2cztLMreyjba-SZR7e6madTLvW2ca40vp4bD7ctmtr1-TbZGUr53fWJ5E_A8dVvg12fJgj8Ho7e8nu08XT3TybLlKDJWnTAjMuraoI4UowhaWiyCqKeYm4NAUyjOG8NBhxLgqLaYkkpALDImJIGkVG4KLP3Xv33tnQ6o3rfPwmaIKEoFQxCSOV9pTxLgRvK7339S73nxpB_a1I94p0ryjyWc_X6_ov8KBCH0zoHxP_ZiBOvgBS1m60 |
| Cites_doi | 10.1007/978-3-030-58452-8_13 10.1109/5.726791 10.1109/CVPR.2009.5206848 10.1109/WACV48630.2021.00374 10.1007/978-3-031-19836-6_20 10.3390/machines13010036 10.18653/v1/D18-1049 10.48550/arXiv.2010.11929 10.1109/CVPR52688.2022.01553 10.48550/arXiv.2009.14794 10.1007/s11263-015-0816-y 10.1109/CVPR.2018.00474 10.1007/978-3-031-73016-0_19 |
| ContentType | Journal Article |
| Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.4018/IJISMD.371399 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-8194 |
| EndPage | 23 |
| ExternalDocumentID | 10_4018_IJISMD_371399 CoReNet_Masking_Autoenco10_4018_IJISMD_37139916 |
| GroupedDBID | 0R~ 4.4 AAYVP ABBKS ABEPT ABJCF ABPHS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BAAKF BENPR BGLVJ BYHXH CBWLS CCPQU CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS H13 HCIFZ HZ~ IAO ICD ITC IVC K7- M7S MV1 N95 NEEBM O9- PHGZM PHGZT PQGLB PTHSS RIF AAYXX CITATION 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c283t-b2568e9f336975928941e9426d168cb1c552adc21667be24d1804720b41e18c93 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483055700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1947-8186 |
| IngestDate | Mon Nov 17 12:10:48 EST 2025 Thu Nov 20 00:44:56 EST 2025 Tue Nov 18 04:10:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c283t-b2568e9f336975928941e9426d168cb1c552adc21667be24d1804720b41e18c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-4407-7242 0009-0009-3685-0625 0000-0002-7470-0187 |
| PQID | 3177449580 |
| PQPubID | 2045837 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3177449580 igi_journals_CoReNet_Masking_Autoenco10_4018_IJISMD_37139916 crossref_primary_10_4018_IJISMD_371399 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of information system modeling and design |
| PublicationYear | 2025 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| References | S.Wang (IJISMD.371399-19) 2020 IJISMD.371399-20 IJISMD.371399-1 IJISMD.371399-10 IJISMD.371399-2 IJISMD.371399-12 IJISMD.371399-13 A.Vaswani (IJISMD.371399-18) 2017; 30 IJISMD.371399-14 IJISMD.371399-15 IJISMD.371399-7 IJISMD.371399-8 IJISMD.371399-3 IJISMD.371399-4 IJISMD.371399-5 IJISMD.371399-6 N.Kitaev (IJISMD.371399-9) 2020 IJISMD.371399-16 IJISMD.371399-17 A.Andoni (IJISMD.371399-0) 2015; Vol. 28 M. V.Koroteev (IJISMD.371399-11) 2021 |
| References_xml | – ident: IJISMD.371399-2 doi: 10.1007/978-3-030-58452-8_13 – year: 2021 ident: IJISMD.371399-11 article-title: BERT: A review of applications in natural language processing and understanding. – volume: Vol. 28 year: 2015 ident: IJISMD.371399-0 publication-title: Practical and optimal LSH for angular distance – ident: IJISMD.371399-14 doi: 10.1109/5.726791 – ident: IJISMD.371399-6 doi: 10.1109/CVPR.2009.5206848 – volume: 30 start-page: 5998 year: 2017 ident: IJISMD.371399-18 article-title: Attention is all you need. publication-title: Advances in Neural Information Processing Systems – ident: IJISMD.371399-15 doi: 10.1109/WACV48630.2021.00374 – ident: IJISMD.371399-3 – ident: IJISMD.371399-13 – ident: IJISMD.371399-1 doi: 10.1007/978-3-031-19836-6_20 – ident: IJISMD.371399-12 doi: 10.3390/machines13010036 – ident: IJISMD.371399-5 – year: 2020 ident: IJISMD.371399-9 article-title: Reformer: The efficient transformer. – year: 2020 ident: IJISMD.371399-19 article-title: Linformer: Self-attention with linear complexity. – ident: IJISMD.371399-20 doi: 10.18653/v1/D18-1049 – ident: IJISMD.371399-7 doi: 10.48550/arXiv.2010.11929 – ident: IJISMD.371399-8 doi: 10.1109/CVPR52688.2022.01553 – ident: IJISMD.371399-4 doi: 10.48550/arXiv.2009.14794 – ident: IJISMD.371399-16 doi: 10.1007/s11263-015-0816-y – ident: IJISMD.371399-17 doi: 10.1109/CVPR.2018.00474 – ident: IJISMD.371399-10 doi: 10.1007/978-3-031-73016-0_19 |
| SSID | ssj0000547756 |
| Score | 2.3039815 |
| Snippet | Transformers are widely used in computer vision for feature extraction, object detection, and image classification. Many methods boost performance by adding... |
| SourceID | proquest crossref igi |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Artificial intelligence Classification Computer vision Convergence Datasets Digital twins Efficiency Image classification Information systems Machine learning Masking Medical research Object recognition |
| Title | MAE-CoReNet: Masking Autoencoder-Convolutional Reformer Net |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.371399 https://www.proquest.com/docview/3177449580 |
| Volume | 16 |
| WOSCitedRecordID | wos001483055700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1947-8194 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547756 issn: 1947-8186 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1947-8194 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547756 issn: 1947-8186 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1947-8194 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547756 issn: 1947-8186 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ6IePDi24gP0oPxtsK223arJgYVIiqEgCbcmu4DwwUQir_f2XYrB40Xz7vddmfn9U033wCcS658PRKKKBoiQOEjRZJICRII4TEvQdicU-a_hN0uHw6jni24Ley1ysInZo5aTaWpkdcwzoUMs3lev519ENM1yvxdtS00SlA2LAk0u7o3-K6xYDoShlkDV3wnOmPKg5xmE0EFr7Wf2oPOw6WHMC1jfl2FpdL4ffzDN2cBp7X930_dgS2bajqNXDd2YU1P9mC7aOPgWKveh-tOo0nup33d1emV00kWpnruNJbp1JBcKj3HwcmnVVFcsK9Noosr4PwDeGs1X-8fie2pQCQmEikRmOJwHY08L4hCP0K4xaiOMEwrGnApqPR9N1HSpUEQCu0yRbnhk6wLnEa5jLxDWJ9MJ_oIHCW4wvNkCWJZFsmAGwN3KRtJhjiJ8QpcFCKNZzl1RoyQw8g-zmUf57KvwA0KPLbGs4jtjmO74bjY8K8P06ACp8UxrNZYncHx38MnsOmalr5ZVeUU1tP5Up_BhvxMx4t5Fcp3zW6vX4XSc0iqmXZ9Aahx0bw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5Q1B-BmwIkbOyxCFYsoXYRYpN5MvBT10kIbQPwU38g4Cz2AuHHgbMfS5I1n5tnJG4AtLUzZtpUhhnIkKKJtSBwZRUKlAhbESJszyfw6bzZFqxVdj8BH8S-M-6yyiIlpoDY97c7I9zDPcYbVvNg_eXomrmuUu10tWmhkblGz729I2QbH1TPEd9v3L87vTi9J3lWAaEylCVGY5IWN2kEQRrwcIeFg1EaYqAwNhVZUl8t-bLRPw5Ar6zNDhVNU3Fc4jQrtxJcw5I-zQHC3r2qcfJ3pYPnDedowFm3E4E9FmMl6IokRe9Wr6m3jbDdAWpgqzQ7T4GjnsfMtF6QJ7mLmv72aWZjOS2mvkvn-HIzY7jzMFG0qvDxqLcBho3JOTns3tmmTA68RD9ztgFd5SXpOxNPYPg52X_MtiAveWFfI4wo4fxHu_8SEJRjr9rp2GTyjhEF_ZTFydRbpULgA5lPW1gx5IBMl2CkglE-ZNIhESuWwlhnWMsO6BEcIsMyDw0DmFsvcYFkY_OPDNCzBWgH7cI0h5iu_D2_C5OVdoy7r1WZtFaZ81744PUFag7Gk_2LXYUK_Jp1BfyP1ZQ8e_tpDPgG_-Sf8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAE-CoReNet%3A+Masking+Autoencoder-Convolutional+Reformer+Net&rft.jtitle=International+journal+of+information+system+modeling+and+design&rft.au=Wang%2C+Di&rft.au=Wang%2C+Li&rft.au=Zhou%2C+Yuyang&rft.date=2025-01-01&rft.pub=IGI+Global&rft.issn=1947-8186&rft.eissn=1947-8194&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.4018%2FIJISMD.371399 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-8186&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-8186&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-8186&client=summon |