Multiplicative Schwarz algorithms for the p-version Galerkin boundary element method in 3D

We study a 2-level multiplicative Schwarz method for the p version Galerkin boundary element method for a weakly singular integral equation of the first kind in 3D. We prove that the rate of convergence of the multiplicative Schwarz operator for the p version grows only logarithmically in p and is i...

Full description

Saved in:
Bibliographic Details
Published in:Applied numerical mathematics Vol. 56; no. 10; pp. 1370 - 1382
Main Author: Maischak, Matthias
Format: Journal Article Conference Proceeding
Language:English
Published: Amsterdam Elsevier B.V 01.10.2006
Elsevier
Subjects:
ISSN:0168-9274, 1873-5460
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study a 2-level multiplicative Schwarz method for the p version Galerkin boundary element method for a weakly singular integral equation of the first kind in 3D. We prove that the rate of convergence of the multiplicative Schwarz operator for the p version grows only logarithmically in p and is independent of h.
AbstractList We study a 2-level multiplicative Schwarz method for the p version Galerkin boundary element method for a weakly singular integral equation of the first kind in 3D. We prove that the rate of convergence of the multiplicative Schwarz operator for the p version grows only logarithmically in p and is independent of h.
Author Maischak, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  surname: Maischak
  fullname: Maischak, Matthias
  email: maischak@ifam.uni-hannover.de
  organization: Institut für Angewandte Mathematik, University of Hannover, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18041693$$DView record in Pascal Francis
BookMark eNp9kD1PxDAMhiMEEsfHL2DJwtjiNL2kHRgQ3xKIAVhYojRxuBxtWiW9Q_DrKRwSG5Mt-Xkt-9kj26EPSMgRg5wBEyfLXA9h1eUFgMiB58DqLTJjleTZvBSwTWYTVWV1IctdspfSEgDm8xJm5OV-1Y5-aL3Ro18jfTSLdx0_qW5f--jHRZeo6yMdF0iHbI0x-T7Qa91ifPOBNv0qWB0_KLbYYRhph-Oit3Qa8YsDsuN0m_Dwt-6T56vLp_Ob7O7h-vb87C4zRcXHjDtbCwDtQGDRCGAll01lpSwEE1PPGmutQ1tL4URleWlBVk6zhjkmZVPwfXK82TvoZHTrog7GJzVE302nKVZByUTNJ45vOBP7lCK6PwTUt0a1VD8a1bdGBVxNGqfU6SaF0wtrj1El4zEYtD6iGZXt_b_5L0JRfvM
CODEN ANMAEL
Cites_doi 10.1090/S0025-5718-1991-1090464-8
10.1007/s002110000125
10.1216/jiea/1181075334
10.1007/s002119900082
10.1137/S0036142997323983
10.1007/s211-001-8012-7
10.1137/1034116
10.1137/0519043
10.1216/jiea/1181075956
ContentType Journal Article
Conference Proceeding
Copyright 2006 IMACS
2006 INIST-CNRS
Copyright_xml – notice: 2006 IMACS
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.apnum.2006.03.019
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1873-5460
EndPage 1382
ExternalDocumentID 18041693
10_1016_j_apnum_2006_03_019
S0168927406000705
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
KOM
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ABPIF
ABPTK
IQODW
ID FETCH-LOGICAL-c283t-3fd9600af06e2b601437b8d7726164371bdddfed976f68d34d078fa1b1f177b23
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239513800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9274
IngestDate Sun Oct 22 16:09:44 EDT 2023
Sat Nov 29 02:29:43 EST 2025
Fri Feb 23 02:32:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Multiplicative Schwarz operator
Preconditioned conjugate gradient algorithm
65N55
p-version boundary integral equation method
65N38
Conjugate gradient method
Convergence acceleration
Singular equation
Schwarz method
Numerical analysis
Applied mathematics
First integral
Convergence rate
Galerkin method
Preconditioning
Boundary element method
Boundary integral equations
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName Selected papers from the First Chilean Workshop on Numerical Analysis of Partial Differential Equations (WONAPDE 2004)
MergedId FETCHMERGED-LOGICAL-c283t-3fd9600af06e2b601437b8d7726164371bdddfed976f68d34d078fa1b1f177b23
PageCount 13
ParticipantIDs pascalfrancis_primary_18041693
crossref_primary_10_1016_j_apnum_2006_03_019
elsevier_sciencedirect_doi_10_1016_j_apnum_2006_03_019
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied numerical mathematics
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Heuer (bib005) 1996; 8
Bergh, Löfström (bib001) 1976; vol. 223
Bramble, Pasciak, Wang, Xu (bib003) 1991; 57
Heuer (bib006) 2001; 88
Stephan, Suri (bib011) 1989; 52
Stephan, Tran (bib012) 2000; 85
Xu (bib013) 1992; 34
Maischak, Stephan, Tran (bib010) 2000; 38
Heuer, Maischak, Stephan (bib007) 1999; 83
Bespalov, Heuer (bib002) 2005; 17
M. Maischak, Manual of the software package maiprogs, Technical report ifam48, Institut für Angewandte Mathematik, Universität Hannover, 2001. ftp://ftp.ifam/uni-hannover.de/pub/preprints/ifam48.ps.Z
Maischak, Stephan, Tran (bib009) 1997; 63
Costabel (bib004) 1988; 19
Maischak (10.1016/j.apnum.2006.03.019_bib009) 1997; 63
Maischak (10.1016/j.apnum.2006.03.019_bib010) 2000; 38
Bramble (10.1016/j.apnum.2006.03.019_bib003) 1991; 57
Stephan (10.1016/j.apnum.2006.03.019_bib012) 2000; 85
Costabel (10.1016/j.apnum.2006.03.019_bib004) 1988; 19
Stephan (10.1016/j.apnum.2006.03.019_bib011) 1989; 52
Bespalov (10.1016/j.apnum.2006.03.019_bib002) 2005; 17
Heuer (10.1016/j.apnum.2006.03.019_bib006) 2001; 88
Xu (10.1016/j.apnum.2006.03.019_bib013) 1992; 34
Bergh (10.1016/j.apnum.2006.03.019_bib001) 1976; vol. 223
Heuer (10.1016/j.apnum.2006.03.019_bib007) 1999; 83
10.1016/j.apnum.2006.03.019_bib008
Heuer (10.1016/j.apnum.2006.03.019_bib005) 1996; 8
References_xml – volume: 52
  start-page: 31
  year: 1989
  end-page: 48
  ident: bib011
  article-title: On the convergence of the
  publication-title: Math. Comp.
– reference: M. Maischak, Manual of the software package maiprogs, Technical report ifam48, Institut für Angewandte Mathematik, Universität Hannover, 2001. ftp://ftp.ifam/uni-hannover.de/pub/preprints/ifam48.ps.Z
– volume: 17
  start-page: 243
  year: 2005
  end-page: 258
  ident: bib002
  article-title: The
  publication-title: J. Integral Equations Appl.
– volume: 83
  start-page: 641
  year: 1999
  end-page: 666
  ident: bib007
  article-title: Exponential convergence of the
  publication-title: Numer. Math.
– volume: 85
  start-page: 433
  year: 2000
  end-page: 468
  ident: bib012
  article-title: Additive Schwartz algorithms for the
  publication-title: Numer. Math.
– volume: 57
  start-page: 1
  year: 1991
  end-page: 21
  ident: bib003
  article-title: Convergence estimates for product iterative methods with applications to domain decomposition
  publication-title: Math. Comp.
– volume: 88
  start-page: 485
  year: 2001
  end-page: 511
  ident: bib006
  article-title: Additive Schwartz method for the
  publication-title: Numer. Math.
– volume: 38
  start-page: 1243
  year: 2000
  end-page: 1268
  ident: bib010
  article-title: Multiplicative Schwarz algorithms for the Galerkin boundary element method
  publication-title: SIAM J. Numer. Anal.
– volume: 19
  start-page: 613
  year: 1988
  end-page: 626
  ident: bib004
  article-title: Boundary integral operators on Lipschitz domains: Elementary results
  publication-title: SIAM J. Math. Anal.
– volume: 8
  start-page: 337
  year: 1996
  end-page: 361
  ident: bib005
  article-title: Efficient algorithms for the
  publication-title: J. Integral Equations Appl.
– volume: 34
  start-page: 581
  year: 1992
  end-page: 613
  ident: bib013
  article-title: Iterative methods by space decomposition and subspace correction
  publication-title: SIAM Review
– volume: 63
  start-page: 111
  year: 1997
  end-page: 132
  ident: bib009
  article-title: Domain decomposition for integral equations of the first kind: Numerical results
  publication-title: Appl. Anal.
– volume: vol. 223
  year: 1976
  ident: bib001
  article-title: Interpolation Spaces
  publication-title: Grundlehren der mathematischen Wissenschaften
– volume: 57
  start-page: 1
  year: 1991
  ident: 10.1016/j.apnum.2006.03.019_bib003
  article-title: Convergence estimates for product iterative methods with applications to domain decomposition
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1991-1090464-8
– volume: 85
  start-page: 433
  year: 2000
  ident: 10.1016/j.apnum.2006.03.019_bib012
  article-title: Additive Schwartz algorithms for the p version of the Galerkin boundary element method
  publication-title: Numer. Math.
  doi: 10.1007/s002110000125
– volume: 17
  start-page: 243
  issue: 3
  year: 2005
  ident: 10.1016/j.apnum.2006.03.019_bib002
  article-title: The p-version of the boundary element method for a three-dimensional crack problem
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/jiea/1181075334
– volume: 83
  start-page: 641
  year: 1999
  ident: 10.1016/j.apnum.2006.03.019_bib007
  article-title: Exponential convergence of the hp-version for the boundary element method on open surfaces
  publication-title: Numer. Math.
  doi: 10.1007/s002119900082
– volume: 38
  start-page: 1243
  year: 2000
  ident: 10.1016/j.apnum.2006.03.019_bib010
  article-title: Multiplicative Schwarz algorithms for the Galerkin boundary element method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997323983
– volume: 88
  start-page: 485
  year: 2001
  ident: 10.1016/j.apnum.2006.03.019_bib006
  article-title: Additive Schwartz method for the p-version of the boundary element method for the single layer potential operator on a plane screen
  publication-title: Numer. Math.
  doi: 10.1007/s211-001-8012-7
– volume: 34
  start-page: 581
  year: 1992
  ident: 10.1016/j.apnum.2006.03.019_bib013
  article-title: Iterative methods by space decomposition and subspace correction
  publication-title: SIAM Review
  doi: 10.1137/1034116
– volume: 63
  start-page: 111
  year: 1997
  ident: 10.1016/j.apnum.2006.03.019_bib009
  article-title: Domain decomposition for integral equations of the first kind: Numerical results
  publication-title: Appl. Anal.
– volume: 19
  start-page: 613
  issue: 3
  year: 1988
  ident: 10.1016/j.apnum.2006.03.019_bib004
  article-title: Boundary integral operators on Lipschitz domains: Elementary results
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0519043
– volume: 8
  start-page: 337
  year: 1996
  ident: 10.1016/j.apnum.2006.03.019_bib005
  article-title: Efficient algorithms for the p-version of the boundary element method
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/jiea/1181075956
– volume: vol. 223
  year: 1976
  ident: 10.1016/j.apnum.2006.03.019_bib001
  article-title: Interpolation Spaces
– volume: 52
  start-page: 31
  year: 1989
  ident: 10.1016/j.apnum.2006.03.019_bib011
  article-title: On the convergence of the p-version for some boundary element Galerkin methods
  publication-title: Math. Comp.
– ident: 10.1016/j.apnum.2006.03.019_bib008
SSID ssj0005540
Score 1.7353879
Snippet We study a 2-level multiplicative Schwarz method for the p version Galerkin boundary element method for a weakly singular integral equation of the first kind...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Publisher
StartPage 1370
SubjectTerms Exact sciences and technology
Mathematics
Multiplicative Schwarz operator
Numerical analysis
Numerical analysis. Scientific computation
p-version boundary integral equation method
Partial differential equations, boundary value problems
Preconditioned conjugate gradient algorithm
Sciences and techniques of general use
Title Multiplicative Schwarz algorithms for the p-version Galerkin boundary element method in 3D
URI https://dx.doi.org/10.1016/j.apnum.2006.03.019
Volume 56
WOSCitedRecordID wos000239513800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005540
  issn: 0168-9274
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg44EJCRhDjI_JD7yVVHGcOc5jNYY2oNMkhlTxEtl1zDqNrGqzbuKv55yzk3YbIB54iaq0aRTfL3fn-_gdIW8Zt1okioMEYIuSmjSPVCrjSIFtYlxay3TDrv85OzqSo1F-7FMx82acQFZV8vo6n_5XUcM5ELZrnf0Hcbd_CifgMwgdjiB2ON4W_J32J3iW1SWmY857P1py1vkyRoZYTdiE7RYNI-eVmv3sqfPvF7NJfYpcDdhMFS0wsNZzFsXF13u6GcjkenmxAt0Po3YBFN6WEQ8Hh1_2DgafsC2ork8n6magIZSs-eiXN9XLwUgByjLBKTv9EhWozFyxBc4ICBoWqcMDkuLIq1dUmYzj5BBvfh0n4p2qHaMMZ301hdXzWSTej73CXSHSvmHg2rJD5siWRM7vk_WECwl79fXB4f7oY1cTtNt00LYPFmiqmoLAWzf-nSvzaKrmIFuLk1GW3JWTJ2Sra-Skxy1EnpJ7ZbVJHnt8UK_X55tkY9gB5Bn5tooL6nFBO1xQwAWFK2iLCxpwQQMuqMcFRVxQ-Iq_3yJfP-yf7B1EfgZHNAbHs464NbDHjZWNRZlo4dggMy0N7MkEczlfpo0xtjTg1VohDU8NvPNWMc0syzKd8OdkrbqoyheEWlHKVEsNLqtLN-_K0nIzzl3VQJKzXG6Td2E5iylSrRShBvGsaFbfDU0VRcwLWP1tIsKSF95bRC-wAMT8-cKdFQF1N_PwePm3H7wiD7sX5DVZq2eX5RvyYLyoJ_PZjgfVLxxqlB8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+numerical+mathematics&rft.atitle=Multiplicative+Schwarz+algorithms+for+the+p-version+galerkin+boundary+element+method+in+3D&rft.au=MAISCHAK%2C+Matthias&rft.date=2006-10-01&rft.pub=Elsevier&rft.issn=0168-9274&rft.eissn=1873-5460&rft.volume=56&rft.issue=10-11&rft.spage=1370&rft.epage=1382&rft_id=info:doi/10.1016%2Fj.apnum.2006.03.019&rft.externalDBID=n%2Fa&rft.externalDocID=18041693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon