Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration
Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often i...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 28; H. 4; S. 821 - 833 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.10.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!