Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration
Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often i...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 28; H. 4; S. 821 - 833 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.10.2019
American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often involve nontrivial optimization subproblems or smoothing approximation. We consider two classes of primal-dual algorithms that do not incur these difficulties, and unify them from a perspective of monotone operator theory. From this unification, we propose a continuum of preconditioned forward-backward operator splitting algorithms amenable to parallel and distributed computing. For the entire region of convergence of the whole continuum of algorithms, we establish its rates of convergence. For some known instances of this continuum, our analysis closes the gap in theory. We further exploit the unification to propose a continuum of accelerated algorithms. We show that the whole continuum attains the theoretically optimal rate of convergence. The scalability of the proposed algorithms, as well as their convergence behavior, is demonstrated up to 1.2 million variables with a distributed implementation. The code is available at
https://github.com/kose-y/dist-primal-dual
. Supplemental materials for this article are available online. |
|---|---|
| AbstractList | Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often involve nontrivial optimization subproblems or smoothing approximation. We consider two classes of primal-dual algorithms that do not incur these difficulties, and unify them from a perspective of monotone operator theory. From this unification, we propose a continuum of preconditioned forward-backward operator splitting algorithms amenable to parallel and distributed computing. For the entire region of convergence of the whole continuum of algorithms, we establish its rates of convergence. For some known instances of this continuum, our analysis closes the gap in theory. We further exploit the unification to propose a continuum of accelerated algorithms. We show that the whole continuum attains the theoretically optimal rate of convergence. The scalability of the proposed algorithms, as well as their convergence behavior, is demonstrated up to 1.2 million variables with a distributed implementation. The code is available at
https://github.com/kose-y/dist-primal-dual
. Supplemental materials for this article are available online. Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear functions. Examples include regression under structured sparsity assumptions. Popular algorithms for solving such problems, for example, ADMM, often involve nontrivial optimization subproblems or smoothing approximation. We consider two classes of primal-dual algorithms that do not incur these difficulties, and unify them from a perspective of monotone operator theory. From this unification, we propose a continuum of preconditioned forward-backward operator splitting algorithms amenable to parallel and distributed computing. For the entire region of convergence of the whole continuum of algorithms, we establish its rates of convergence. For some known instances of this continuum, our analysis closes the gap in theory. We further exploit the unification to propose a continuum of accelerated algorithms. We show that the whole continuum attains the theoretically optimal rate of convergence. The scalability of the proposed algorithms, as well as their convergence behavior, is demonstrated up to 1.2 million variables with a distributed implementation. The code is available at https://github.com/kose-y/dist-primal-dual. Supplemental materials for this article are available online. |
| Author | Won, Joong-Ho Yu, Donghyeon Ko, Seyoon |
| Author_xml | – sequence: 1 givenname: Seyoon surname: Ko fullname: Ko, Seyoon organization: Department of Statistics, Seoul National University – sequence: 2 givenname: Donghyeon surname: Yu fullname: Yu, Donghyeon organization: Department of Statistics, Inha University – sequence: 3 givenname: Joong-Ho surname: Won fullname: Won, Joong-Ho email: wonj@stats.snu.ac.kr organization: Department of Statistics, Seoul National University |
| BookMark | eNqFkFFrFDEQx4NUsK1-BCEgvrlnJrnd7OKLx9mqUGih9TnMZrOaI7c5J1nK-emb61UQH_QpIfP7ZWb-Z-xkipNj7DWIBYhWvAfRQNsIsZACugXUndS1fsZOoVa6khrqk3IvTHWAXrCzlDZCCGg6fcqmC0w-7PkNEobggv-FfXAcp4F_8imT7-f8-LIOmBKPI1-F75F8_rFNfIzEbzPNNs_kBn67Q0o-79_x-1Ln17vstxj4yloXHGH2cXrJno8Yknv1dJ6zb5cXd-sv1dX156_r1VVlZatyBTgg6M4KsP1SWwTXgW5dGXoYQbhla4dGDq3qlJCql1aNTi9tN_aqdbWtnTpnb47_7ij-nF3KZhNnmkpLI5USxWq0KtSHI2UppkRuNNbnxzkzoQ8GhDkEbH4HbA4Bm6eAi13_Ze-oLEz7_3pvj94m5Uh_SlIJbZa1bKWUULiPR85PJegt3kcKg8m4D5FGwsn6ZNS_Wz0ALn2g1w |
| CitedBy_id | crossref_primary_10_1007_s10444_020_09840_9 crossref_primary_10_1093_bib_bbab256 crossref_primary_10_1137_18M1207685 crossref_primary_10_1214_21_STS835 |
| Cites_doi | 10.1088/0266-5611/29/2/025011 10.1214/07-AOAS131 10.1561/2200000016 10.1080/10618600.2015.1114491 10.1137/050626090 10.1080/10618600.2013.878662 10.1137/100801652 10.1109/TMI.2010.2093536 10.1145/1553374.1553431 10.1214/11-AOS878 10.1016/0167-2789(92)90242-F 10.1016/j.orl.2015.02.001 10.1137/151003076 10.1137/09076934X 10.1214/11-AOAS514 10.1186/s13663-016-0543-2 10.1111/j.1467-9868.2005.00532.x 10.1007/s10957-012-0245-9 10.1137/080725891 10.1137/100814494 10.1137/080716542 10.1007/s10107-004-0552-5 10.1111/j.1467-9868.2005.00490.x 10.1007/s10444-011-9254-8 10.1007/s10851-010-0251-1 10.1007/s10107-015-0957-3 10.1007/s11075-015-0007-5 10.1145/1835804.1835847 10.1088/0266-5611/27/12/125007 10.1007/978-1-4419-9467-7 10.1080/02331934.2014.966306 10.1137/130919362 10.1007/978-1-4419-8853-9 10.1088/0031-9155/57/10/3065 10.1007/s11228-011-0191-y 10.1109/ICIP.2014.7025841 10.1080/10618600.2017.1328363 |
| ContentType | Journal Article |
| Copyright | 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019 2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| Copyright_xml | – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2019 – notice: 2019 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2019.1592757 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 833 |
| ExternalDocumentID | 10_1080_10618600_2019_1592757 45282221 1592757 |
| Genre | Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ ADYSH AMPGV AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c283t-1ada179c01cb47ca1e9178e001df10e48cd62d8393023b2c3fe74c9fb38e5c5e3 |
| IEDL.DBID | TFW |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 07:40:43 EDT 2025 Tue Nov 18 22:27:32 EST 2025 Sat Nov 29 03:24:17 EST 2025 Thu May 29 08:47:49 EDT 2025 Mon Oct 20 23:49:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c283t-1ada179c01cb47ca1e9178e001df10e48cd62d8393023b2c3fe74c9fb38e5c5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2330023673 |
| PQPubID | 29738 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2330023673 jstor_primary_10_2307_45282221 crossref_primary_10_1080_10618600_2019_1592757 crossref_citationtrail_10_1080_10618600_2019_1592757 informaworld_taylorfrancis_310_1080_10618600_2019_1592757 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-02 |
| PublicationDateYYYYMMDD | 2019-10-02 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – name: Taylor & Francis Ltd |
| References | CIT0030 Combettes P. L. (CIT0016) 2014 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 Bertsekas D. P (CIT0004) 2009 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 Xin B. (CIT0038) 2014 Lin Z. (CIT0026) 2011 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0010 doi: 10.1088/0266-5611/29/2/025011 – ident: CIT0021 doi: 10.1214/07-AOAS131 – ident: CIT0007 doi: 10.1561/2200000016 – ident: CIT0041 doi: 10.1080/10618600.2015.1114491 – ident: CIT0042 – ident: CIT0015 doi: 10.1137/050626090 – ident: CIT0039 doi: 10.1080/10618600.2013.878662 – ident: CIT0029 doi: 10.1137/100801652 – ident: CIT0032 doi: 10.1109/TMI.2010.2093536 – ident: CIT0024 doi: 10.1145/1553374.1553431 – ident: CIT0036 doi: 10.1214/11-AOS878 – ident: CIT0033 doi: 10.1016/0167-2789(92)90242-F – ident: CIT0019 doi: 10.1016/j.orl.2015.02.001 – ident: CIT0018 doi: 10.1137/151003076 – ident: CIT0020 doi: 10.1137/09076934X – volume-title: Convex Optimization Theory year: 2009 ident: CIT0004 – ident: CIT0012 doi: 10.1214/11-AOAS514 – start-page: 612 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: CIT0026 – ident: CIT0011 doi: 10.1186/s13663-016-0543-2 – ident: CIT0040 doi: 10.1111/j.1467-9868.2005.00532.x – ident: CIT0017 doi: 10.1007/s10957-012-0245-9 – ident: CIT0022 doi: 10.1137/080725891 – ident: CIT0023 doi: 10.1137/100814494 – ident: CIT0003 doi: 10.1137/080716542 – ident: CIT0031 doi: 10.1007/s10107-004-0552-5 – ident: CIT0035 doi: 10.1111/j.1467-9868.2005.00490.x – ident: CIT0037 doi: 10.1007/s10444-011-9254-8 – ident: CIT0008 doi: 10.1007/s10851-010-0251-1 – ident: CIT0009 doi: 10.1007/s10107-015-0957-3 – ident: CIT0006 doi: 10.1007/s11075-015-0007-5 – ident: CIT0027 doi: 10.1145/1835804.1835847 – ident: CIT0028 doi: 10.1088/0266-5611/27/12/125007 – ident: CIT0002 doi: 10.1007/978-1-4419-9467-7 – ident: CIT0005 doi: 10.1080/02331934.2014.966306 – ident: CIT0013 doi: 10.1137/130919362 – ident: CIT0001 – ident: CIT0030 doi: 10.1007/978-1-4419-8853-9 – start-page: 2163 volume-title: AAAI year: 2014 ident: CIT0038 – ident: CIT0034 doi: 10.1088/0031-9155/57/10/3065 – ident: CIT0014 doi: 10.1007/s11228-011-0191-y – start-page: 4141 volume-title: 2014 IEEE International Conference on Image Processing (ICIP) year: 2014 ident: CIT0016 doi: 10.1109/ICIP.2014.7025841 – ident: CIT0025 doi: 10.1080/10618600.2017.1328363 |
| SSID | ssj0001697 |
| Score | 2.2975013 |
| Snippet | Many statistical learning problems can be posed as minimization of a sum of two convex functions, one typically a composition of nonsmooth and linear... |
| SourceID | proquest crossref jstor informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 821 |
| SubjectTerms | Acceleration Advances in Sampling and Optimization Algorithms Computer networks Convergence Distributed computing Distributed processing GPU Linear functions Machine learning Monotone operator theory Nonsmooth optimization Operator splitting Optimization Parallel processing Regression analysis Sparsity Statistical analysis |
| Title | Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2019.1592757 https://www.jstor.org/stable/45282221 https://www.proquest.com/docview/2330023673 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYigDjwKiPCoPjKTk4cbJiKAVAxQkiugWOX5ApZKipiDx77lznIoKIQYYE-Xi-HwvW1--I-QkhyTEEYrDhQo9JkLmCaW5xyJfRYrFJq4o86_5YJCMRumdQxOWDlaJe2hTEUXYWI3OLfKyRsSd4S4mgUSNwKy0A_k45F38nxxSP7rmsP-4iMWBa68CEh6K1P_w_PSWpey0xF1a4xW_xWybiPqb_zCFLbLhqlB6XpnNNlnRRZOs3ywoXMsmaWAZWrE475CiJ8rx5IPeiRn2XrFQsImmMDy9ROZdbJpl79gem3Rq6PnkaTobz59fSgqzo_eWpvZtphW9fxUWCHJK8QyY3kLMesFvkRIyYGWPu-Sh3xteXHmuU4MnoTyZe4FQAjxb-oHMGZci0LALTDToX5nA1yyRKg4V1GLYoigPZWQ0ZzI1eZToruzqaI-sFtNC7xNqeAg1h-Ex45rF0qQqECmUkX4qQczELcLqFcqkozHHbhqTLHBsp7VuM9Rt5nTbIp2F2GvF4_GbQPp1-bO5PUAxVbeTLPpFtm1t5etICLjPWBdRu2HQIke1EWUuZpTwRGT5_Hl08IexD0kDLy3eMDwiq7C8-pisyXcwmVnbescn5-oIyg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTuswEB3xkoAFb0R5XS9YEm6TOHGyREAFuqUgUXTZWa4fgFRa1BYk_p4ZJ6mKEGIB2yQTx_Z4ZmydnANw0MEkJAiKI5SJAq4iHihjRcDjuokNT11aUOY3RauV3d3lk__CEKyS9tCuIIrwsZoWNx1GV5C4v7SNyTBTEzIrP8KEHIlETMNsgrmW-PPbjf_jaByWAitoEpBN9RfPV6_5kJ8-sJdWiMVPUdunosbyb3RiBZbKQpQdF56zClO2twaLl2MW1-EaLFAlWhA5r0PvTA0fu2_sWg1IfsWjwbqWYfvslMh3STfLX_Eym6zv2HH3vj94HD08DRl2j914ptqXgTXs5ll5LMgho2NgdoVh64m-RWtMgoVLbsBt46x9ch6UYg2BxgplFITKKFzcuh7qDhdahRY3gpnFCTAurFueaZNGBssxUinqRDp2VnCdu06c2UQnNt6EmV6_Z7eAORFh2eFEyoXlqXa5CVWOlWQ912jm0hrwaoqkLpnMSVCjK8OS8LQaW0ljK8uxrcHR2Oy5oPL4ziCfnH858mcorhA8kfE3tvveWSZbIsy95AkBd6OwBruVF8kybAzxidhT-ot4-wdt_4H58_ZlUzYvWv92YIFuefhhtAszONV2D-b0K7rPYN8vlXewzQz0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4tLELsAVgeostjfdgjgSZx4-SIgIrVsqUSILhZrh9QqbRVU5D23--M41QghDjANcnEsT2eGVtfvg_gVw-TkCAojlAmibhKeKSMFRFPmyY1PHNZRZl_Ljqd_Pa26AY0YRlglbSHdhVRhI_VtLjHxtWIuEPaxeSYqAmYVRxgPk5ES8zBVyydM3Lyq_bNLBjHQV8FTSKyqX_iees1L9LTC_LSGrD4Kmj7TNRe-YQ-rMJyKEPZUeU33-GLHa7Bt78zDtdyDZaoDq1onNdheKrK_uAf66oJia94LNjAMmyenRD1Lqlm-SteZJONHDsa3I0m_en9Q8mwd-zS89Q-Tqxhl2PlkSD7jA6B2QUGrQf6Fq0xBVYOuQHX7dOr47MoSDVEGuuTaRQro3Bp62ase1xoFVvcBuYWx9-4uGl5rk2WGCzGSKOol-jUWcF14Xppblu6ZdNNmB-OhnYLmBMJFh1OZFxYnmlXmFgVWEc2C41mLmsAr2dI6sBjTnIaAxkHutN6bCWNrQxj24CDmdm4IvJ4z6B4Pv1y6k9QXCV3ItN3bPe8rzxviRD3krcItpvEDdipnUiGoFHiE6kn9Bfpjw-0_RMWuydtef6782cbluiOxx4mOzCPM213YUE_ofdM9vxC-Q9w6Qum |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Easily+Parallelizable+and+Distributable+Class+of+Algorithms+for+Structured+Sparsity%2C+with+Optimal+Acceleration&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Ko%2C+Seyoon&rft.au=Yu%2C+Donghyeon&rft.au=Won%2C+Joong-Ho&rft.date=2019-10-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=28&rft.issue=4&rft.spage=821&rft.epage=833&rft_id=info:doi/10.1080%2F10618600.2019.1592757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2019_1592757 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |