Research on tool condition monitoring (TCM) using a novel unsupervised deep neural network (DNN)

In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Vibroengineering Ročník 26; číslo 1; s. 193 - 208
Hlavní autori: Gao, Jingjing, Liu, Jing, Yu, Xinli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.02.2024
ISSN:1392-8716, 2538-8460
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the feature vector. On this basis, principal component analysis (PCA) and T-distributed random neighbor embedding (t-SNE) are used to reduce the dimensionality of the features twice, and finally a simple two-dimensional feature matrix is obtained. Finally, the deep neural network model of SDA is established by adding SoftMax regression layer, and the tool wear monitoring results are taken as new labeled data, and the deep neural network parameters are fine-tuned by secondary backpropagation. The experimental results show that the proposed method can learn adaptively and obtain effective feature expression, and the tool wear state recognition results are highly accurate. The proposed method can effectively identify the tool wear state.
AbstractList In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the feature vector. On this basis, principal component analysis (PCA) and T-distributed random neighbor embedding (t-SNE) are used to reduce the dimensionality of the features twice, and finally a simple two-dimensional feature matrix is obtained. Finally, the deep neural network model of SDA is established by adding SoftMax regression layer, and the tool wear monitoring results are taken as new labeled data, and the deep neural network parameters are fine-tuned by secondary backpropagation. The experimental results show that the proposed method can learn adaptively and obtain effective feature expression, and the tool wear state recognition results are highly accurate. The proposed method can effectively identify the tool wear state.
Author Yu, Xinli
Liu, Jing
Gao, Jingjing
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Gao
  fullname: Gao, Jingjing
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 3
  givenname: Xinli
  surname: Yu
  fullname: Yu, Xinli
BookMark eNp1kD1PwzAQhi1UJErpzOqxHdLaju04IyqfUikSKnOwnQsYUruy0yL-PSkwITG9d9L7nHTPKRr44AGhc0pmjIpSzN_2MGOE5TOW55IeoSETucoUl2SAhjQvWaYKKk_QOCVnCOcFl5TwIXp-hAQ62lccPO5CaLENvnad69dN8K4L0fkXPFkv7qd4lw6zxj7socU7n3ZbiHuXoMY1wBZ72EXd9tF9hPiOJ5er1fQMHTe6TTD-zRF6ur5aL26z5cPN3eJimVmmWJc1piRAuDEGmOKcFQBcWFpzoYlsuJSUiqZRpalFAUrZUvTVsgBjbE1LCfkIiZ-7NoaUIjSVdZ0-_NFF7dqKkurbVNWbqg6mqm9TPTf_w22j2-j4-S_xBaGNbs0
CitedBy_id crossref_primary_10_1016_j_rcim_2025_103033
Cites_doi 10.1016/j.ymssp.2005.10.010
10.1016/j.proeng.2017.02.294
10.1007/s00170-015-8303-8
10.1016/j.ymssp.2016.08.035
10.1016/j.ijmachtools.2014.10.011
10.1016/j.sna.2014.01.004
10.3390/mi13060943
10.1007/s00170-014-6560-6
10.1016/j.ymssp.2022.109641
10.1016/j.ymssp.2018.03.040
10.1177/1077546314545097
10.19026/rjaset.7.502
10.1016/j.jmapro.2016.03.010
10.1007/s00170-013-5258-5
10.1016/j.ymssp.2012.05.001
10.1109/TKDE.2012.232
10.1016/S0890-6955(99)00066-8
10.1016/j.measurement.2013.07.015
10.1016/j.cirp.2016.04.101
10.1007/s10845-016-1221-2
10.1016/j.advengsoft.2014.12.010
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.21595/jve.2023.23361
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2538-8460
EndPage 208
ExternalDocumentID 10_21595_jve_2023_23361
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c282t-fb90e04bbbe284427ee45c1d45a06f466115ff89bd57e88c95bbb97ebbcd196e3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163574200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1392-8716
IngestDate Sat Nov 29 05:35:43 EST 2025
Tue Nov 18 22:27:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-fb90e04bbbe284427ee45c1d45a06f466115ff89bd57e88c95bbb97ebbcd196e3
OpenAccessLink https://www.extrica.com/article/23361/pdf
PageCount 16
ParticipantIDs crossref_citationtrail_10_21595_jve_2023_23361
crossref_primary_10_21595_jve_2023_23361
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Vibroengineering
PublicationYear 2024
References key-10.21595/jve.2023.23361-cit17
key-10.21595/jve.2023.23361-cit18
key-10.21595/jve.2023.23361-cit19
key-10.21595/jve.2023.23361-cit4
key-10.21595/jve.2023.23361-cit13
key-10.21595/jve.2023.23361-cit5
key-10.21595/jve.2023.23361-cit14
key-10.21595/jve.2023.23361-cit2
key-10.21595/jve.2023.23361-cit15
key-10.21595/jve.2023.23361-cit3
key-10.21595/jve.2023.23361-cit16
key-10.21595/jve.2023.23361-cit8
key-10.21595/jve.2023.23361-cit20
key-10.21595/jve.2023.23361-cit9
key-10.21595/jve.2023.23361-cit10
key-10.21595/jve.2023.23361-cit21
key-10.21595/jve.2023.23361-cit6
key-10.21595/jve.2023.23361-cit11
key-10.21595/jve.2023.23361-cit7
key-10.21595/jve.2023.23361-cit12
key-10.21595/jve.2023.23361-cit1
References_xml – ident: key-10.21595/jve.2023.23361-cit13
  doi: 10.1016/j.ymssp.2005.10.010
– ident: key-10.21595/jve.2023.23361-cit10
  doi: 10.1016/j.proeng.2017.02.294
– ident: key-10.21595/jve.2023.23361-cit19
  doi: 10.1007/s00170-015-8303-8
– ident: key-10.21595/jve.2023.23361-cit21
  doi: 10.1016/j.ymssp.2016.08.035
– ident: key-10.21595/jve.2023.23361-cit5
  doi: 10.1016/j.ijmachtools.2014.10.011
– ident: key-10.21595/jve.2023.23361-cit3
  doi: 10.1016/j.sna.2014.01.004
– ident: key-10.21595/jve.2023.23361-cit18
  doi: 10.3390/mi13060943
– ident: key-10.21595/jve.2023.23361-cit17
  doi: 10.1007/s00170-014-6560-6
– ident: key-10.21595/jve.2023.23361-cit20
  doi: 10.1016/j.ymssp.2022.109641
– ident: key-10.21595/jve.2023.23361-cit12
  doi: 10.1016/j.ymssp.2018.03.040
– ident: key-10.21595/jve.2023.23361-cit4
  doi: 10.1177/1077546314545097
– ident: key-10.21595/jve.2023.23361-cit14
  doi: 10.19026/rjaset.7.502
– ident: key-10.21595/jve.2023.23361-cit2
  doi: 10.1016/j.jmapro.2016.03.010
– ident: key-10.21595/jve.2023.23361-cit11
  doi: 10.1007/s00170-013-5258-5
– ident: key-10.21595/jve.2023.23361-cit9
  doi: 10.1016/j.ymssp.2012.05.001
– ident: key-10.21595/jve.2023.23361-cit16
  doi: 10.1109/TKDE.2012.232
– ident: key-10.21595/jve.2023.23361-cit15
  doi: 10.1016/S0890-6955(99)00066-8
– ident: key-10.21595/jve.2023.23361-cit1
  doi: 10.1016/j.measurement.2013.07.015
– ident: key-10.21595/jve.2023.23361-cit8
  doi: 10.1016/j.cirp.2016.04.101
– ident: key-10.21595/jve.2023.23361-cit6
  doi: 10.1007/s10845-016-1221-2
– ident: key-10.21595/jve.2023.23361-cit7
  doi: 10.1016/j.advengsoft.2014.12.010
SSID ssib044746104
Score 2.3079276
Snippet In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 193
Title Research on tool condition monitoring (TCM) using a novel unsupervised deep neural network (DNN)
Volume 26
WOSCitedRecordID wos001163574200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2538-8460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044746104
  issn: 1392-8716
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKwoELAgFi-ZIPHLqqssSO08RHtCziwFYcCuotxPZE6qq4VdtUe9pfsD-asZ2kKauVlgOXqBo5o7bzMp6ZjN8Q8iGpkhL3aRmVFasioaoxPlIlj7hUiVIs1qkMwyayySSfzeT3weCmPQuzW2TW5ldXcvVfTY0yNLY7OvsP5u6UogA_o9HximbH670M3_bS-dcAjmETM17jG7NGv_0DvG6qA9OzC1cTqH21oBzZ5Q4Wo9pu6pXzHxuMRA3AauQYL9GONvSLuxs_TyZtAeF2WPsT8-8l7FkOuwafMrzjQdFlT_xtXrfizgF5yWxuF_N-TYKLto25c6MYdUUuFQu7jJdx51ox2on7vjeclj_AWHCkLMxNbPZk7rkfbrl7DFeko8a43DnCU56c8iQJ1O6HxNp_bXhdGyImQF5FgQoKp6DwCh6QhzxLpWsQvLg-b72TEJnjpg9TkpufF7iivI6Ph1-iF-b04pXpU_KksQj9FADyjAzAPie_WnDQpaUOHLQDB92Dgw4RGifUA4OW1AOD9oFBHTBoAAZtgEGHCIuTF-THl_Pp2deombERaUy2t1GlZAyxUEoBBiqCZwAi1cyItIzHlcDojaVVlUtl0gzyXMsUl8oMlNIGnTckL8mRXVp4RSgGn8aMgTHNFCb945wJnRkwOhaQSCaOyWn7lxS6IaB3c1AWxR12OCbD7oZV4F65a-nr-y99Qx7vIfuWHG3XNbwjj_RuO9-s33uT_wEqYXoY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+tool+condition+monitoring+%28TCM%29+using+a+novel+unsupervised+deep+neural+network+%28DNN%29&rft.jtitle=Journal+of+Vibroengineering&rft.au=Gao%2C+Jingjing&rft.au=Liu%2C+Jing&rft.au=Yu%2C+Xinli&rft.date=2024-02-01&rft.issn=1392-8716&rft.eissn=2538-8460&rft.volume=26&rft.issue=1&rft.spage=193&rft.epage=208&rft_id=info:doi/10.21595%2Fjve.2023.23361&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jve_2023_23361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-8716&client=summon