Research on tool condition monitoring (TCM) using a novel unsupervised deep neural network (DNN)
In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the...
Uložené v:
| Vydané v: | Journal of Vibroengineering Ročník 26; číslo 1; s. 193 - 208 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.02.2024
|
| ISSN: | 1392-8716, 2538-8460 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the feature vector. On this basis, principal component analysis (PCA) and T-distributed random neighbor embedding (t-SNE) are used to reduce the dimensionality of the features twice, and finally a simple two-dimensional feature matrix is obtained. Finally, the deep neural network model of SDA is established by adding SoftMax regression layer, and the tool wear monitoring results are taken as new labeled data, and the deep neural network parameters are fine-tuned by secondary backpropagation. The experimental results show that the proposed method can learn adaptively and obtain effective feature expression, and the tool wear state recognition results are highly accurate. The proposed method can effectively identify the tool wear state. |
|---|---|
| AbstractList | In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising autoencoder (SDA) is proposed. After feature extraction and selection, the stack denoising automatic coding network reduces the dimensionality of the feature vector. On this basis, principal component analysis (PCA) and T-distributed random neighbor embedding (t-SNE) are used to reduce the dimensionality of the features twice, and finally a simple two-dimensional feature matrix is obtained. Finally, the deep neural network model of SDA is established by adding SoftMax regression layer, and the tool wear monitoring results are taken as new labeled data, and the deep neural network parameters are fine-tuned by secondary backpropagation. The experimental results show that the proposed method can learn adaptively and obtain effective feature expression, and the tool wear state recognition results are highly accurate. The proposed method can effectively identify the tool wear state. |
| Author | Yu, Xinli Liu, Jing Gao, Jingjing |
| Author_xml | – sequence: 1 givenname: Jingjing surname: Gao fullname: Gao, Jingjing – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing – sequence: 3 givenname: Xinli surname: Yu fullname: Yu, Xinli |
| BookMark | eNp1kD1PwzAQhi1UJErpzOqxHdLaju04IyqfUikSKnOwnQsYUruy0yL-PSkwITG9d9L7nHTPKRr44AGhc0pmjIpSzN_2MGOE5TOW55IeoSETucoUl2SAhjQvWaYKKk_QOCVnCOcFl5TwIXp-hAQ62lccPO5CaLENvnad69dN8K4L0fkXPFkv7qd4lw6zxj7socU7n3ZbiHuXoMY1wBZ72EXd9tF9hPiOJ5er1fQMHTe6TTD-zRF6ur5aL26z5cPN3eJimVmmWJc1piRAuDEGmOKcFQBcWFpzoYlsuJSUiqZRpalFAUrZUvTVsgBjbE1LCfkIiZ-7NoaUIjSVdZ0-_NFF7dqKkurbVNWbqg6mqm9TPTf_w22j2-j4-S_xBaGNbs0 |
| CitedBy_id | crossref_primary_10_1016_j_rcim_2025_103033 |
| Cites_doi | 10.1016/j.ymssp.2005.10.010 10.1016/j.proeng.2017.02.294 10.1007/s00170-015-8303-8 10.1016/j.ymssp.2016.08.035 10.1016/j.ijmachtools.2014.10.011 10.1016/j.sna.2014.01.004 10.3390/mi13060943 10.1007/s00170-014-6560-6 10.1016/j.ymssp.2022.109641 10.1016/j.ymssp.2018.03.040 10.1177/1077546314545097 10.19026/rjaset.7.502 10.1016/j.jmapro.2016.03.010 10.1007/s00170-013-5258-5 10.1016/j.ymssp.2012.05.001 10.1109/TKDE.2012.232 10.1016/S0890-6955(99)00066-8 10.1016/j.measurement.2013.07.015 10.1016/j.cirp.2016.04.101 10.1007/s10845-016-1221-2 10.1016/j.advengsoft.2014.12.010 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.21595/jve.2023.23361 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2538-8460 |
| EndPage | 208 |
| ExternalDocumentID | 10_21595_jve_2023_23361 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c282t-fb90e04bbbe284427ee45c1d45a06f466115ff89bd57e88c95bbb97ebbcd196e3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163574200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1392-8716 |
| IngestDate | Sat Nov 29 05:35:43 EST 2025 Tue Nov 18 22:27:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c282t-fb90e04bbbe284427ee45c1d45a06f466115ff89bd57e88c95bbb97ebbcd196e3 |
| OpenAccessLink | https://www.extrica.com/article/23361/pdf |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_21595_jve_2023_23361 crossref_primary_10_21595_jve_2023_23361 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Vibroengineering |
| PublicationYear | 2024 |
| References | key-10.21595/jve.2023.23361-cit17 key-10.21595/jve.2023.23361-cit18 key-10.21595/jve.2023.23361-cit19 key-10.21595/jve.2023.23361-cit4 key-10.21595/jve.2023.23361-cit13 key-10.21595/jve.2023.23361-cit5 key-10.21595/jve.2023.23361-cit14 key-10.21595/jve.2023.23361-cit2 key-10.21595/jve.2023.23361-cit15 key-10.21595/jve.2023.23361-cit3 key-10.21595/jve.2023.23361-cit16 key-10.21595/jve.2023.23361-cit8 key-10.21595/jve.2023.23361-cit20 key-10.21595/jve.2023.23361-cit9 key-10.21595/jve.2023.23361-cit10 key-10.21595/jve.2023.23361-cit21 key-10.21595/jve.2023.23361-cit6 key-10.21595/jve.2023.23361-cit11 key-10.21595/jve.2023.23361-cit7 key-10.21595/jve.2023.23361-cit12 key-10.21595/jve.2023.23361-cit1 |
| References_xml | – ident: key-10.21595/jve.2023.23361-cit13 doi: 10.1016/j.ymssp.2005.10.010 – ident: key-10.21595/jve.2023.23361-cit10 doi: 10.1016/j.proeng.2017.02.294 – ident: key-10.21595/jve.2023.23361-cit19 doi: 10.1007/s00170-015-8303-8 – ident: key-10.21595/jve.2023.23361-cit21 doi: 10.1016/j.ymssp.2016.08.035 – ident: key-10.21595/jve.2023.23361-cit5 doi: 10.1016/j.ijmachtools.2014.10.011 – ident: key-10.21595/jve.2023.23361-cit3 doi: 10.1016/j.sna.2014.01.004 – ident: key-10.21595/jve.2023.23361-cit18 doi: 10.3390/mi13060943 – ident: key-10.21595/jve.2023.23361-cit17 doi: 10.1007/s00170-014-6560-6 – ident: key-10.21595/jve.2023.23361-cit20 doi: 10.1016/j.ymssp.2022.109641 – ident: key-10.21595/jve.2023.23361-cit12 doi: 10.1016/j.ymssp.2018.03.040 – ident: key-10.21595/jve.2023.23361-cit4 doi: 10.1177/1077546314545097 – ident: key-10.21595/jve.2023.23361-cit14 doi: 10.19026/rjaset.7.502 – ident: key-10.21595/jve.2023.23361-cit2 doi: 10.1016/j.jmapro.2016.03.010 – ident: key-10.21595/jve.2023.23361-cit11 doi: 10.1007/s00170-013-5258-5 – ident: key-10.21595/jve.2023.23361-cit9 doi: 10.1016/j.ymssp.2012.05.001 – ident: key-10.21595/jve.2023.23361-cit16 doi: 10.1109/TKDE.2012.232 – ident: key-10.21595/jve.2023.23361-cit15 doi: 10.1016/S0890-6955(99)00066-8 – ident: key-10.21595/jve.2023.23361-cit1 doi: 10.1016/j.measurement.2013.07.015 – ident: key-10.21595/jve.2023.23361-cit8 doi: 10.1016/j.cirp.2016.04.101 – ident: key-10.21595/jve.2023.23361-cit6 doi: 10.1007/s10845-016-1221-2 – ident: key-10.21595/jve.2023.23361-cit7 doi: 10.1016/j.advengsoft.2014.12.010 |
| SSID | ssib044746104 |
| Score | 2.3079276 |
| Snippet | In order to improve the recognition precision and accuracy of tool wear monitoring, an unsupervised deep neural network (DNN) based on stack denoising... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 193 |
| Title | Research on tool condition monitoring (TCM) using a novel unsupervised deep neural network (DNN) |
| Volume | 26 |
| WOSCitedRecordID | wos001163574200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2538-8460 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044746104 issn: 1392-8716 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKwoELAgFi-ZIPHLqqssSO08RHtCziwFYcCuotxPZE6qq4VdtUe9pfsD-asZ2kKauVlgOXqBo5o7bzMp6ZjN8Q8iGpkhL3aRmVFasioaoxPlIlj7hUiVIs1qkMwyayySSfzeT3weCmPQuzW2TW5ldXcvVfTY0yNLY7OvsP5u6UogA_o9HximbH670M3_bS-dcAjmETM17jG7NGv_0DvG6qA9OzC1cTqH21oBzZ5Q4Wo9pu6pXzHxuMRA3AauQYL9GONvSLuxs_TyZtAeF2WPsT8-8l7FkOuwafMrzjQdFlT_xtXrfizgF5yWxuF_N-TYKLto25c6MYdUUuFQu7jJdx51ox2on7vjeclj_AWHCkLMxNbPZk7rkfbrl7DFeko8a43DnCU56c8iQJ1O6HxNp_bXhdGyImQF5FgQoKp6DwCh6QhzxLpWsQvLg-b72TEJnjpg9TkpufF7iivI6Ph1-iF-b04pXpU_KksQj9FADyjAzAPie_WnDQpaUOHLQDB92Dgw4RGifUA4OW1AOD9oFBHTBoAAZtgEGHCIuTF-THl_Pp2deombERaUy2t1GlZAyxUEoBBiqCZwAi1cyItIzHlcDojaVVlUtl0gzyXMsUl8oMlNIGnTckL8mRXVp4RSgGn8aMgTHNFCb945wJnRkwOhaQSCaOyWn7lxS6IaB3c1AWxR12OCbD7oZV4F65a-nr-y99Qx7vIfuWHG3XNbwjj_RuO9-s33uT_wEqYXoY |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+tool+condition+monitoring+%28TCM%29+using+a+novel+unsupervised+deep+neural+network+%28DNN%29&rft.jtitle=Journal+of+Vibroengineering&rft.au=Gao%2C+Jingjing&rft.au=Liu%2C+Jing&rft.au=Yu%2C+Xinli&rft.date=2024-02-01&rft.issn=1392-8716&rft.eissn=2538-8460&rft.volume=26&rft.issue=1&rft.spage=193&rft.epage=208&rft_id=info:doi/10.21595%2Fjve.2023.23361&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jve_2023_23361 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-8716&client=summon |