Weakly Ordered A-Commutative Partial Groups of Linear Operators Densely Defined on Hilbert Space

The notion of a generalized effect algebra is presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on a Hilbert space with the usual sum of operators. The structure of the set of not only positive li...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Acta polytechnica (Prague, Czech Republic : 1992) Ročník 53; číslo 3
Hlavný autor: Janda, Jirí
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: CTU Central Library 01.01.2013
Predmet:
ISSN:1210-2709, 1805-2363
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The notion of a generalized effect algebra is presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on a Hilbert space with the usual sum of operators. The structure of the set of not only positive linear operators can be described with the notion of a weakly ordered partial commutative group (wop-group).Due to the non-constructive algebraic nature of the wop-group we introduce its stronger version called a weakly ordered partial a-commutative group (woa-group). We show that it also describes the structure of not only positive linear operators.
ISSN:1210-2709
1805-2363
DOI:10.14311/1807