In-place algorithms for computing a largest clique in geometric intersection graphs

In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n ax...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 178; s. 58 - 70
Hlavní autori: De, Minati, Nandy, Subhas C., Roy, Sasanka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 11.12.2014
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary sizes. For the intersection graph of fixed height rectangles, the time complexity can be slightly improved to O(nlogn+nK), where K is the size of the maximum clique. For disk graphs, we consider two variations of the maximum clique problem, namely geometric clique and graphical clique. The time complexity of our algorithm for finding the largest geometric clique is O(mlogn+n2) where m is the number of edges in the disk graph, and it works for disks of arbitrary radii. For graphical clique, our proposed algorithm works for unit disks (i.e., of same radii) and the worst case time complexity is O(n2+m(n+K3)); m is the number of edges in the unit disk intersection graph and K is the size of the largest clique in that graph. It uses O(n3) time in-place computation of maximum matching in a bipartite graph, where the vertices are given in an array, and the existence of an edge between a pair of vertices can be checked by an oracle on demand (from problem specification) in O(1) time. This problem is of independent interest. All these algorithms need O(1) work space in addition to the input array.
AbstractList In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary sizes. For the intersection graph of fixed height rectangles, the time complexity can be slightly improved to O(nlogn+nK), where K is the size of the maximum clique. For disk graphs, we consider two variations of the maximum clique problem, namely geometric clique and graphical clique. The time complexity of our algorithm for finding the largest geometric clique is O(mlogn+n2) where m is the number of edges in the disk graph, and it works for disks of arbitrary radii. For graphical clique, our proposed algorithm works for unit disks (i.e., of same radii) and the worst case time complexity is O(n2+m(n+K3)); m is the number of edges in the unit disk intersection graph and K is the size of the largest clique in that graph. It uses O(n3) time in-place computation of maximum matching in a bipartite graph, where the vertices are given in an array, and the existence of an edge between a pair of vertices can be checked by an oracle on demand (from problem specification) in O(1) time. This problem is of independent interest. All these algorithms need O(1) work space in addition to the input array.
Author De, Minati
Roy, Sasanka
Nandy, Subhas C.
Author_xml – sequence: 1
  givenname: Minati
  surname: De
  fullname: De, Minati
  email: minati.isi@gmail.com, minati@cs.technion.ac.il
  organization: The Technion–Israel Institute of Technology, Haifa - 32000, Israel
– sequence: 2
  givenname: Subhas C.
  surname: Nandy
  fullname: Nandy, Subhas C.
  organization: Indian Statistical Institute, Kolkata - 700108, India
– sequence: 3
  givenname: Sasanka
  orcidid: 0000-0003-4174-4738
  surname: Roy
  fullname: Roy, Sasanka
  organization: Chennai Mathematical Institute, Chennai - 603103, India
BookMark eNp9kM9KxDAQh4Os4O7qA3jLC7Rm0jZt8SSLfxYWPKjgLaTppJulbWrSFXx7s6xnT8NvmG-Y-VZkMboRCbkFlgIDcXdIWzWknEGeMpEyXlyQJVQlT0RZwoIs44xIOFSfV2QVwoExBjEtydt2TKZeaaSq75y3834I1DhPtRum42zHjiraK99hmKnu7dcRqR1ph27A2Vsdw4w-oJ6ti22vpn24JpdG9QFv_uqafDw9vm9ekt3r83bzsEs0r_icNFVR6Fo0GWBpFMSEAKY1PCtrw0AXVV43OWRGlG3Oixo5FCgqk-lCNHmeZWsC573auxA8Gjl5Oyj_I4HJkxV5kNGKPFmRTMhoJTL3ZwbjYd8WvQza4qixtT4-IVtn_6F_AbolbMk
Cites_doi 10.1016/0898-1221(95)00029-X
10.1016/0196-6774(82)90021-9
10.1137/0213028
10.1007/3-540-37623-2_45
10.1016/0012-365X(90)90358-O
10.1016/0895-7177(94)90067-1
10.1109/FOCS.2004.40
10.1016/S0925-7721(98)00028-5
10.1007/BF02238188
10.1016/j.comgeo.2010.04.005
10.1016/S0895-7177(99)00061-8
10.1016/0196-6774(83)90012-3
10.1002/net.3230250205
10.1007/3-540-45995-2_43
10.1016/j.jcss.2011.11.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dam.2014.06.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 70
ExternalDocumentID 10_1016_j_dam_2014_06_025
S0166218X1400300X
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c282t-b855c96b31e7fa1855e11fdf2379f01c5849b413f67d4259e215e68f3c56b4433
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343343200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 02:59:34 EST 2025
Sat Apr 29 22:45:10 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clique
Bipartite matching
Geometric intersection graphs
In-place algorithms
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-b855c96b31e7fa1855e11fdf2379f01c5849b413f67d4259e215e68f3c56b4433
ORCID 0000-0003-4174-4738
OpenAccessLink https://dx.doi.org/10.1016/j.dam.2014.06.025
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_dam_2014_06_025
elsevier_sciencedirect_doi_10_1016_j_dam_2014_06_025
PublicationCentury 2000
PublicationDate 2014-12-11
PublicationDateYYYYMMDD 2014-12-11
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-11
  day: 11
PublicationDecade 2010
PublicationTitle Discrete Applied Mathematics
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Michael, Quint (br000095) 1999; 29
Toussaint (br000125) 1981
Datta, Kulkarni, Tewari (br000045) 2010; vol. 17
M.A. Soss, On the size of the Euclidean sphere of influence graph, in: Proc. 11th. CCCG, 1999.
M. Mucha, P. Sankowski, Maximum matchings via gaussian elimination, in: FOCS, pp. 248–255, 2004.
Lee (br000065) 1983
Michael, Quint (br000090) 1994; 105
Nandy, Bhattacharya (br000105) 1995; 29
Breu (br000015) 1996
Papadimitriou, Steiglitz (br000110) 2006
H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, G.T. Toussaint, In-place planar convex hull algorithms, in: Proc. LATIN, pp. 494–507, 2002.
Chan, Chen (br000025) 2010; 43
Asano, Sato, Ohtsuki (br000010) 1986; vol. 4
G.T. Toussaint, Pattern recognition and geometric complexity, in: Proc. 5th Int. Conf. on Pattern Recognition, pp. 1324–1347, 1980.
Datta, Kulkarni, Tewari, Vinodchandran (br000050) 2012; 78
Chandra, Stockmayer, Viskin (br000030) 1984; 13
Chazelle, Lee (br000035) 1986; 36
Li, Wang (br000075) 2003
Clark, Colbourn, Johnson (br000040) 1990; 86
Agarwal, van Kreveld, Suri (br000005) 1998; 11
Imai, Asano (br000060) 1983; 4
Michael, Quint (br000085) 1994; 20
Marathe, Breu, Hunt, Ravi, Rosenkrantz (br000080) 1995; 25
Lee, Preparata (br000070) 1982; 3
Golumbic (br000055) 1980
Toussaint (br000130) 1988
Papadimitriou (10.1016/j.dam.2014.06.025_br000110) 2006
Agarwal (10.1016/j.dam.2014.06.025_br000005) 1998; 11
Lee (10.1016/j.dam.2014.06.025_br000070) 1982; 3
Toussaint (10.1016/j.dam.2014.06.025_br000125) 1981
Toussaint (10.1016/j.dam.2014.06.025_br000130) 1988
Clark (10.1016/j.dam.2014.06.025_br000040) 1990; 86
Chan (10.1016/j.dam.2014.06.025_br000025) 2010; 43
10.1016/j.dam.2014.06.025_br000120
Asano (10.1016/j.dam.2014.06.025_br000010) 1986; vol. 4
10.1016/j.dam.2014.06.025_br000100
10.1016/j.dam.2014.06.025_br000020
Imai (10.1016/j.dam.2014.06.025_br000060) 1983; 4
Michael (10.1016/j.dam.2014.06.025_br000095) 1999; 29
Breu (10.1016/j.dam.2014.06.025_br000015) 1996
Datta (10.1016/j.dam.2014.06.025_br000050) 2012; 78
Li (10.1016/j.dam.2014.06.025_br000075) 2003
10.1016/j.dam.2014.06.025_br000115
Datta (10.1016/j.dam.2014.06.025_br000045) 2010; vol. 17
Chazelle (10.1016/j.dam.2014.06.025_br000035) 1986; 36
Chandra (10.1016/j.dam.2014.06.025_br000030) 1984; 13
Michael (10.1016/j.dam.2014.06.025_br000085) 1994; 20
Michael (10.1016/j.dam.2014.06.025_br000090) 1994; 105
Lee (10.1016/j.dam.2014.06.025_br000065) 1983
Marathe (10.1016/j.dam.2014.06.025_br000080) 1995; 25
Golumbic (10.1016/j.dam.2014.06.025_br000055) 1980
Nandy (10.1016/j.dam.2014.06.025_br000105) 1995; 29
References_xml – start-page: 229
  year: 1988
  end-page: 260
  ident: br000130
  article-title: A graph-theoretic primal sketch
  publication-title: Comput. Morphol.
– reference: M. Mucha, P. Sankowski, Maximum matchings via gaussian elimination, in: FOCS, pp. 248–255, 2004.
– year: 2003
  ident: br000075
  article-title: Wireless sensor networks and computational geometry
  publication-title: Handbook of Sensor Networks
– volume: 25
  start-page: 59
  year: 1995
  end-page: 68
  ident: br000080
  article-title: Simple heuristics for unit disk graphs
  publication-title: Networks
– volume: vol. 17
  start-page: 201
  year: 2010
  ident: br000045
  article-title: Perfect matching in bipartite planar graphs is in UL
  publication-title: Electronic Colloquium in Computational Complexity (ECCC)
– volume: 105
  start-page: 153
  year: 1994
  end-page: 160
  ident: br000090
  article-title: Sphere of influence graphs: a survey
  publication-title: Congr. Numer.
– volume: vol. 4
  start-page: 295
  year: 1986
  end-page: 347
  ident: br000010
  article-title: Computational geometric algorithms
  publication-title: Layout Design and Verification
– volume: 78
  start-page: 765
  year: 2012
  end-page: 779
  ident: br000050
  article-title: Space complexity of perfect matching in bounded genus bipartite graphs
  publication-title: J. Comput. System Sci.
– reference: G.T. Toussaint, Pattern recognition and geometric complexity, in: Proc. 5th Int. Conf. on Pattern Recognition, pp. 1324–1347, 1980.
– volume: 29
  start-page: 45
  year: 1995
  end-page: 61
  ident: br000105
  article-title: A unified algorithm for finding maximum and minimum point enclosing rectangles and cuboids
  publication-title: Comput. Math. Appl.
– volume: 20
  start-page: 19
  year: 1994
  end-page: 24
  ident: br000085
  article-title: Sphere of influence graphs: edge density and clique size
  publication-title: Math. Comput. Modelling
– year: 2006
  ident: br000110
  article-title: Combinatorial Optimization: Algorithms and Complexity
– reference: M.A. Soss, On the size of the Euclidean sphere of influence graph, in: Proc. 11th. CCCG, 1999.
– volume: 29
  start-page: 45
  year: 1999
  end-page: 53
  ident: br000095
  article-title: Sphere of influence graphs in general metric spaces
  publication-title: Math. Comput. Modelling
– volume: 4
  start-page: 310
  year: 1983
  end-page: 323
  ident: br000060
  article-title: Finding the connected components and maximum clique of an intersection graph of rectangles in the plane
  publication-title: J. Algorithms
– volume: 3
  start-page: 218
  year: 1982
  end-page: 224
  ident: br000070
  article-title: An improved algorithm for the rectangle enclosure problem
  publication-title: J. Algorithms
– volume: 86
  start-page: 165
  year: 1990
  end-page: 177
  ident: br000040
  article-title: Unit disk graphs
  publication-title: Discrete Math.
– volume: 13
  start-page: 423
  year: 1984
  end-page: 439
  ident: br000030
  article-title: Constant depth reducibility
  publication-title: SIAM J. Comput.
– year: 1980
  ident: br000055
  article-title: Algorithmic Graph Theory and Perfect Graphs
– start-page: 91
  year: 1983
  end-page: 107
  ident: br000065
  article-title: Maximum clique problem of rectangle graphs
  publication-title: Advances in Computing Research
– volume: 36
  start-page: 1
  year: 1986
  end-page: 16
  ident: br000035
  article-title: On a circle placement problem
  publication-title: Computing
– year: 1996
  ident: br000015
  article-title: Algorithmic Aspects of Constrained Unit Disk Graphs
– reference: H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, G.T. Toussaint, In-place planar convex hull algorithms, in: Proc. LATIN, pp. 494–507, 2002.
– start-page: 73
  year: 1981
  end-page: 91
  ident: br000125
  article-title: Computational geometric problems in pattern recognition
  publication-title: Pattern Recognit. Theory Appl.
– volume: 11
  start-page: 209
  year: 1998
  end-page: 218
  ident: br000005
  article-title: Label placement by maximum independent set in rectangles
  publication-title: Comput. Geom.
– volume: 43
  start-page: 636
  year: 2010
  end-page: 646
  ident: br000025
  article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection
  publication-title: Comput. Geom.
– volume: 29
  start-page: 45
  issue: 8
  year: 1995
  ident: 10.1016/j.dam.2014.06.025_br000105
  article-title: A unified algorithm for finding maximum and minimum point enclosing rectangles and cuboids
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(95)00029-X
– volume: 3
  start-page: 218
  issue: 3
  year: 1982
  ident: 10.1016/j.dam.2014.06.025_br000070
  article-title: An improved algorithm for the rectangle enclosure problem
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(82)90021-9
– volume: 13
  start-page: 423
  issue: 2
  year: 1984
  ident: 10.1016/j.dam.2014.06.025_br000030
  article-title: Constant depth reducibility
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213028
– ident: 10.1016/j.dam.2014.06.025_br000115
  doi: 10.1007/3-540-37623-2_45
– volume: 86
  start-page: 165
  issue: 1–3
  year: 1990
  ident: 10.1016/j.dam.2014.06.025_br000040
  article-title: Unit disk graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(90)90358-O
– year: 2003
  ident: 10.1016/j.dam.2014.06.025_br000075
  article-title: Wireless sensor networks and computational geometry
– volume: 105
  start-page: 153
  year: 1994
  ident: 10.1016/j.dam.2014.06.025_br000090
  article-title: Sphere of influence graphs: a survey
  publication-title: Congr. Numer.
– start-page: 91
  year: 1983
  ident: 10.1016/j.dam.2014.06.025_br000065
  article-title: Maximum clique problem of rectangle graphs
– volume: 20
  start-page: 19
  issue: 7
  year: 1994
  ident: 10.1016/j.dam.2014.06.025_br000085
  article-title: Sphere of influence graphs: edge density and clique size
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(94)90067-1
– ident: 10.1016/j.dam.2014.06.025_br000100
  doi: 10.1109/FOCS.2004.40
– ident: 10.1016/j.dam.2014.06.025_br000120
– volume: vol. 4
  start-page: 295
  year: 1986
  ident: 10.1016/j.dam.2014.06.025_br000010
  article-title: Computational geometric algorithms
– volume: vol. 17
  start-page: 201
  year: 2010
  ident: 10.1016/j.dam.2014.06.025_br000045
  article-title: Perfect matching in bipartite planar graphs is in UL
– year: 1980
  ident: 10.1016/j.dam.2014.06.025_br000055
– volume: 11
  start-page: 209
  issue: 3–4
  year: 1998
  ident: 10.1016/j.dam.2014.06.025_br000005
  article-title: Label placement by maximum independent set in rectangles
  publication-title: Comput. Geom.
  doi: 10.1016/S0925-7721(98)00028-5
– start-page: 229
  year: 1988
  ident: 10.1016/j.dam.2014.06.025_br000130
  article-title: A graph-theoretic primal sketch
  publication-title: Comput. Morphol.
– volume: 36
  start-page: 1
  year: 1986
  ident: 10.1016/j.dam.2014.06.025_br000035
  article-title: On a circle placement problem
  publication-title: Computing
  doi: 10.1007/BF02238188
– volume: 43
  start-page: 636
  issue: 8
  year: 2010
  ident: 10.1016/j.dam.2014.06.025_br000025
  article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2010.04.005
– volume: 29
  start-page: 45
  year: 1999
  ident: 10.1016/j.dam.2014.06.025_br000095
  article-title: Sphere of influence graphs in general metric spaces
  publication-title: Math. Comput. Modelling
  doi: 10.1016/S0895-7177(99)00061-8
– volume: 4
  start-page: 310
  year: 1983
  ident: 10.1016/j.dam.2014.06.025_br000060
  article-title: Finding the connected components and maximum clique of an intersection graph of rectangles in the plane
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(83)90012-3
– start-page: 73
  year: 1981
  ident: 10.1016/j.dam.2014.06.025_br000125
  article-title: Computational geometric problems in pattern recognition
  publication-title: Pattern Recognit. Theory Appl.
– volume: 25
  start-page: 59
  issue: 2
  year: 1995
  ident: 10.1016/j.dam.2014.06.025_br000080
  article-title: Simple heuristics for unit disk graphs
  publication-title: Networks
  doi: 10.1002/net.3230250205
– ident: 10.1016/j.dam.2014.06.025_br000020
  doi: 10.1007/3-540-45995-2_43
– volume: 78
  start-page: 765
  issue: 3
  year: 2012
  ident: 10.1016/j.dam.2014.06.025_br000050
  article-title: Space complexity of perfect matching in bounded genus bipartite graphs
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2011.11.002
– year: 2006
  ident: 10.1016/j.dam.2014.06.025_br000110
– year: 1996
  ident: 10.1016/j.dam.2014.06.025_br000015
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.063997
Snippet In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 58
SubjectTerms Bipartite matching
Clique
Geometric intersection graphs
In-place algorithms
Title In-place algorithms for computing a largest clique in geometric intersection graphs
URI https://dx.doi.org/10.1016/j.dam.2014.06.025
Volume 178
WOSCitedRecordID wos000343343200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLbaoQc4VF1V6CIfeurIVRbHsY-IUkHVokql1dwix2NDKHjQZED8_D4vWYAilUMvUeQozvK-vHx-fv4eQu8Lw-AzKjMCwx9NqElqwpVQhM2ZEU5_k3r54l9fy4MDPpuJ7zEhs_XlBEpr-dWVOP-vpoY2MLZbOnsPc_edQgPsg9FhC2aH7T8Zft8Sn2g1ladHCxj6HwfJBZ88fuGTnOX01OV_tyu3LtLJtzZ2eqQXZ664lvICEstWhxLiXs-6HTPYTw04GmDaPX_91gu_DjXqQ7i7cZHGPtosbfDn4KqOZTvd-TjM9YR22Ur7W47DEKkXO4xuMkYmGSPAF2bXXGsozxOdY9Boj7_ZUC7klgMPsYQTuI6TCUipF1cNS6Ovi2Xf-In1qYVd1tpJBV1UrovKZe5lxUO0lpWF4BO0tr2_O_syEhlzCnrrXVhumIUCNkajNnx4tG5W3OcH3rjDv_OaEVc5fIIex0EG3g7geIoeaPsMbYwM9Rz96GCCB5hggAnuYYIljjDBASa4sbiHCR7DBAeYvEA_P-8e7uyRWGCDKBhpr0jNi0IJVuepLo0E5lboNDVzk-WlMEmqgJyKGliOYeUcfLvQwA814yZXBaspzfOXaGIXVr9CWLhCAzzJBIUDJlFcJbWkSkg-F1QmYhN96F5PdR50VKo7TbWJaPcCq0gEA8GrACZ3n7Z1n2u8RusDjN-gyWp5od-iR-py1bTLdxEjfwAfE3q0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-place+algorithms+for+computing+a+largest+clique+in+geometric+intersection+graphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=De%2C+Minati&rft.au=Nandy%2C+Subhas+C.&rft.au=Roy%2C+Sasanka&rft.date=2014-12-11&rft.issn=0166-218X&rft.volume=178&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1016%2Fj.dam.2014.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2014_06_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon