In-place algorithms for computing a largest clique in geometric intersection graphs
In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n ax...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 178; s. 58 - 70 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
11.12.2014
|
| Predmet: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary sizes. For the intersection graph of fixed height rectangles, the time complexity can be slightly improved to O(nlogn+nK), where K is the size of the maximum clique. For disk graphs, we consider two variations of the maximum clique problem, namely geometric clique and graphical clique. The time complexity of our algorithm for finding the largest geometric clique is O(mlogn+n2) where m is the number of edges in the disk graph, and it works for disks of arbitrary radii. For graphical clique, our proposed algorithm works for unit disks (i.e., of same radii) and the worst case time complexity is O(n2+m(n+K3)); m is the number of edges in the unit disk intersection graph and K is the size of the largest clique in that graph. It uses O(n3) time in-place computation of maximum matching in a bipartite graph, where the vertices are given in an array, and the existence of an edge between a pair of vertices can be checked by an oracle on demand (from problem specification) in O(1) time. This problem is of independent interest. All these algorithms need O(1) work space in addition to the input array. |
|---|---|
| AbstractList | In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2logn) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary sizes. For the intersection graph of fixed height rectangles, the time complexity can be slightly improved to O(nlogn+nK), where K is the size of the maximum clique. For disk graphs, we consider two variations of the maximum clique problem, namely geometric clique and graphical clique. The time complexity of our algorithm for finding the largest geometric clique is O(mlogn+n2) where m is the number of edges in the disk graph, and it works for disks of arbitrary radii. For graphical clique, our proposed algorithm works for unit disks (i.e., of same radii) and the worst case time complexity is O(n2+m(n+K3)); m is the number of edges in the unit disk intersection graph and K is the size of the largest clique in that graph. It uses O(n3) time in-place computation of maximum matching in a bipartite graph, where the vertices are given in an array, and the existence of an edge between a pair of vertices can be checked by an oracle on demand (from problem specification) in O(1) time. This problem is of independent interest. All these algorithms need O(1) work space in addition to the input array. |
| Author | De, Minati Roy, Sasanka Nandy, Subhas C. |
| Author_xml | – sequence: 1 givenname: Minati surname: De fullname: De, Minati email: minati.isi@gmail.com, minati@cs.technion.ac.il organization: The Technion–Israel Institute of Technology, Haifa - 32000, Israel – sequence: 2 givenname: Subhas C. surname: Nandy fullname: Nandy, Subhas C. organization: Indian Statistical Institute, Kolkata - 700108, India – sequence: 3 givenname: Sasanka orcidid: 0000-0003-4174-4738 surname: Roy fullname: Roy, Sasanka organization: Chennai Mathematical Institute, Chennai - 603103, India |
| BookMark | eNp9kM9KxDAQh4Os4O7qA3jLC7Rm0jZt8SSLfxYWPKjgLaTppJulbWrSFXx7s6xnT8NvmG-Y-VZkMboRCbkFlgIDcXdIWzWknEGeMpEyXlyQJVQlT0RZwoIs44xIOFSfV2QVwoExBjEtydt2TKZeaaSq75y3834I1DhPtRum42zHjiraK99hmKnu7dcRqR1ph27A2Vsdw4w-oJ6ti22vpn24JpdG9QFv_uqafDw9vm9ekt3r83bzsEs0r_icNFVR6Fo0GWBpFMSEAKY1PCtrw0AXVV43OWRGlG3Oixo5FCgqk-lCNHmeZWsC573auxA8Gjl5Oyj_I4HJkxV5kNGKPFmRTMhoJTL3ZwbjYd8WvQza4qixtT4-IVtn_6F_AbolbMk |
| Cites_doi | 10.1016/0898-1221(95)00029-X 10.1016/0196-6774(82)90021-9 10.1137/0213028 10.1007/3-540-37623-2_45 10.1016/0012-365X(90)90358-O 10.1016/0895-7177(94)90067-1 10.1109/FOCS.2004.40 10.1016/S0925-7721(98)00028-5 10.1007/BF02238188 10.1016/j.comgeo.2010.04.005 10.1016/S0895-7177(99)00061-8 10.1016/0196-6774(83)90012-3 10.1002/net.3230250205 10.1007/3-540-45995-2_43 10.1016/j.jcss.2011.11.002 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.dam.2014.06.025 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6771 |
| EndPage | 70 |
| ExternalDocumentID | 10_1016_j_dam_2014_06_025 S0166218X1400300X |
| GroupedDBID | -~X 6I. AAFTH ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ |
| ID | FETCH-LOGICAL-c282t-b855c96b31e7fa1855e11fdf2379f01c5849b413f67d4259e215e68f3c56b4433 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343343200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Sat Nov 29 02:59:34 EST 2025 Sat Apr 29 22:45:10 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clique Bipartite matching Geometric intersection graphs In-place algorithms |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c282t-b855c96b31e7fa1855e11fdf2379f01c5849b413f67d4259e215e68f3c56b4433 |
| ORCID | 0000-0003-4174-4738 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.dam.2014.06.025 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_dam_2014_06_025 elsevier_sciencedirect_doi_10_1016_j_dam_2014_06_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-11 |
| PublicationDateYYYYMMDD | 2014-12-11 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Michael, Quint (br000095) 1999; 29 Toussaint (br000125) 1981 Datta, Kulkarni, Tewari (br000045) 2010; vol. 17 M.A. Soss, On the size of the Euclidean sphere of influence graph, in: Proc. 11th. CCCG, 1999. M. Mucha, P. Sankowski, Maximum matchings via gaussian elimination, in: FOCS, pp. 248–255, 2004. Lee (br000065) 1983 Michael, Quint (br000090) 1994; 105 Nandy, Bhattacharya (br000105) 1995; 29 Breu (br000015) 1996 Papadimitriou, Steiglitz (br000110) 2006 H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, G.T. Toussaint, In-place planar convex hull algorithms, in: Proc. LATIN, pp. 494–507, 2002. Chan, Chen (br000025) 2010; 43 Asano, Sato, Ohtsuki (br000010) 1986; vol. 4 G.T. Toussaint, Pattern recognition and geometric complexity, in: Proc. 5th Int. Conf. on Pattern Recognition, pp. 1324–1347, 1980. Datta, Kulkarni, Tewari, Vinodchandran (br000050) 2012; 78 Chandra, Stockmayer, Viskin (br000030) 1984; 13 Chazelle, Lee (br000035) 1986; 36 Li, Wang (br000075) 2003 Clark, Colbourn, Johnson (br000040) 1990; 86 Agarwal, van Kreveld, Suri (br000005) 1998; 11 Imai, Asano (br000060) 1983; 4 Michael, Quint (br000085) 1994; 20 Marathe, Breu, Hunt, Ravi, Rosenkrantz (br000080) 1995; 25 Lee, Preparata (br000070) 1982; 3 Golumbic (br000055) 1980 Toussaint (br000130) 1988 Papadimitriou (10.1016/j.dam.2014.06.025_br000110) 2006 Agarwal (10.1016/j.dam.2014.06.025_br000005) 1998; 11 Lee (10.1016/j.dam.2014.06.025_br000070) 1982; 3 Toussaint (10.1016/j.dam.2014.06.025_br000125) 1981 Toussaint (10.1016/j.dam.2014.06.025_br000130) 1988 Clark (10.1016/j.dam.2014.06.025_br000040) 1990; 86 Chan (10.1016/j.dam.2014.06.025_br000025) 2010; 43 10.1016/j.dam.2014.06.025_br000120 Asano (10.1016/j.dam.2014.06.025_br000010) 1986; vol. 4 10.1016/j.dam.2014.06.025_br000100 10.1016/j.dam.2014.06.025_br000020 Imai (10.1016/j.dam.2014.06.025_br000060) 1983; 4 Michael (10.1016/j.dam.2014.06.025_br000095) 1999; 29 Breu (10.1016/j.dam.2014.06.025_br000015) 1996 Datta (10.1016/j.dam.2014.06.025_br000050) 2012; 78 Li (10.1016/j.dam.2014.06.025_br000075) 2003 10.1016/j.dam.2014.06.025_br000115 Datta (10.1016/j.dam.2014.06.025_br000045) 2010; vol. 17 Chazelle (10.1016/j.dam.2014.06.025_br000035) 1986; 36 Chandra (10.1016/j.dam.2014.06.025_br000030) 1984; 13 Michael (10.1016/j.dam.2014.06.025_br000085) 1994; 20 Michael (10.1016/j.dam.2014.06.025_br000090) 1994; 105 Lee (10.1016/j.dam.2014.06.025_br000065) 1983 Marathe (10.1016/j.dam.2014.06.025_br000080) 1995; 25 Golumbic (10.1016/j.dam.2014.06.025_br000055) 1980 Nandy (10.1016/j.dam.2014.06.025_br000105) 1995; 29 |
| References_xml | – start-page: 229 year: 1988 end-page: 260 ident: br000130 article-title: A graph-theoretic primal sketch publication-title: Comput. Morphol. – reference: M. Mucha, P. Sankowski, Maximum matchings via gaussian elimination, in: FOCS, pp. 248–255, 2004. – year: 2003 ident: br000075 article-title: Wireless sensor networks and computational geometry publication-title: Handbook of Sensor Networks – volume: 25 start-page: 59 year: 1995 end-page: 68 ident: br000080 article-title: Simple heuristics for unit disk graphs publication-title: Networks – volume: vol. 17 start-page: 201 year: 2010 ident: br000045 article-title: Perfect matching in bipartite planar graphs is in UL publication-title: Electronic Colloquium in Computational Complexity (ECCC) – volume: 105 start-page: 153 year: 1994 end-page: 160 ident: br000090 article-title: Sphere of influence graphs: a survey publication-title: Congr. Numer. – volume: vol. 4 start-page: 295 year: 1986 end-page: 347 ident: br000010 article-title: Computational geometric algorithms publication-title: Layout Design and Verification – volume: 78 start-page: 765 year: 2012 end-page: 779 ident: br000050 article-title: Space complexity of perfect matching in bounded genus bipartite graphs publication-title: J. Comput. System Sci. – reference: G.T. Toussaint, Pattern recognition and geometric complexity, in: Proc. 5th Int. Conf. on Pattern Recognition, pp. 1324–1347, 1980. – volume: 29 start-page: 45 year: 1995 end-page: 61 ident: br000105 article-title: A unified algorithm for finding maximum and minimum point enclosing rectangles and cuboids publication-title: Comput. Math. Appl. – volume: 20 start-page: 19 year: 1994 end-page: 24 ident: br000085 article-title: Sphere of influence graphs: edge density and clique size publication-title: Math. Comput. Modelling – year: 2006 ident: br000110 article-title: Combinatorial Optimization: Algorithms and Complexity – reference: M.A. Soss, On the size of the Euclidean sphere of influence graph, in: Proc. 11th. CCCG, 1999. – volume: 29 start-page: 45 year: 1999 end-page: 53 ident: br000095 article-title: Sphere of influence graphs in general metric spaces publication-title: Math. Comput. Modelling – volume: 4 start-page: 310 year: 1983 end-page: 323 ident: br000060 article-title: Finding the connected components and maximum clique of an intersection graph of rectangles in the plane publication-title: J. Algorithms – volume: 3 start-page: 218 year: 1982 end-page: 224 ident: br000070 article-title: An improved algorithm for the rectangle enclosure problem publication-title: J. Algorithms – volume: 86 start-page: 165 year: 1990 end-page: 177 ident: br000040 article-title: Unit disk graphs publication-title: Discrete Math. – volume: 13 start-page: 423 year: 1984 end-page: 439 ident: br000030 article-title: Constant depth reducibility publication-title: SIAM J. Comput. – year: 1980 ident: br000055 article-title: Algorithmic Graph Theory and Perfect Graphs – start-page: 91 year: 1983 end-page: 107 ident: br000065 article-title: Maximum clique problem of rectangle graphs publication-title: Advances in Computing Research – volume: 36 start-page: 1 year: 1986 end-page: 16 ident: br000035 article-title: On a circle placement problem publication-title: Computing – year: 1996 ident: br000015 article-title: Algorithmic Aspects of Constrained Unit Disk Graphs – reference: H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, G.T. Toussaint, In-place planar convex hull algorithms, in: Proc. LATIN, pp. 494–507, 2002. – start-page: 73 year: 1981 end-page: 91 ident: br000125 article-title: Computational geometric problems in pattern recognition publication-title: Pattern Recognit. Theory Appl. – volume: 11 start-page: 209 year: 1998 end-page: 218 ident: br000005 article-title: Label placement by maximum independent set in rectangles publication-title: Comput. Geom. – volume: 43 start-page: 636 year: 2010 end-page: 646 ident: br000025 article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection publication-title: Comput. Geom. – volume: 29 start-page: 45 issue: 8 year: 1995 ident: 10.1016/j.dam.2014.06.025_br000105 article-title: A unified algorithm for finding maximum and minimum point enclosing rectangles and cuboids publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(95)00029-X – volume: 3 start-page: 218 issue: 3 year: 1982 ident: 10.1016/j.dam.2014.06.025_br000070 article-title: An improved algorithm for the rectangle enclosure problem publication-title: J. Algorithms doi: 10.1016/0196-6774(82)90021-9 – volume: 13 start-page: 423 issue: 2 year: 1984 ident: 10.1016/j.dam.2014.06.025_br000030 article-title: Constant depth reducibility publication-title: SIAM J. Comput. doi: 10.1137/0213028 – ident: 10.1016/j.dam.2014.06.025_br000115 doi: 10.1007/3-540-37623-2_45 – volume: 86 start-page: 165 issue: 1–3 year: 1990 ident: 10.1016/j.dam.2014.06.025_br000040 article-title: Unit disk graphs publication-title: Discrete Math. doi: 10.1016/0012-365X(90)90358-O – year: 2003 ident: 10.1016/j.dam.2014.06.025_br000075 article-title: Wireless sensor networks and computational geometry – volume: 105 start-page: 153 year: 1994 ident: 10.1016/j.dam.2014.06.025_br000090 article-title: Sphere of influence graphs: a survey publication-title: Congr. Numer. – start-page: 91 year: 1983 ident: 10.1016/j.dam.2014.06.025_br000065 article-title: Maximum clique problem of rectangle graphs – volume: 20 start-page: 19 issue: 7 year: 1994 ident: 10.1016/j.dam.2014.06.025_br000085 article-title: Sphere of influence graphs: edge density and clique size publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(94)90067-1 – ident: 10.1016/j.dam.2014.06.025_br000100 doi: 10.1109/FOCS.2004.40 – ident: 10.1016/j.dam.2014.06.025_br000120 – volume: vol. 4 start-page: 295 year: 1986 ident: 10.1016/j.dam.2014.06.025_br000010 article-title: Computational geometric algorithms – volume: vol. 17 start-page: 201 year: 2010 ident: 10.1016/j.dam.2014.06.025_br000045 article-title: Perfect matching in bipartite planar graphs is in UL – year: 1980 ident: 10.1016/j.dam.2014.06.025_br000055 – volume: 11 start-page: 209 issue: 3–4 year: 1998 ident: 10.1016/j.dam.2014.06.025_br000005 article-title: Label placement by maximum independent set in rectangles publication-title: Comput. Geom. doi: 10.1016/S0925-7721(98)00028-5 – start-page: 229 year: 1988 ident: 10.1016/j.dam.2014.06.025_br000130 article-title: A graph-theoretic primal sketch publication-title: Comput. Morphol. – volume: 36 start-page: 1 year: 1986 ident: 10.1016/j.dam.2014.06.025_br000035 article-title: On a circle placement problem publication-title: Computing doi: 10.1007/BF02238188 – volume: 43 start-page: 636 issue: 8 year: 2010 ident: 10.1016/j.dam.2014.06.025_br000025 article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2010.04.005 – volume: 29 start-page: 45 year: 1999 ident: 10.1016/j.dam.2014.06.025_br000095 article-title: Sphere of influence graphs in general metric spaces publication-title: Math. Comput. Modelling doi: 10.1016/S0895-7177(99)00061-8 – volume: 4 start-page: 310 year: 1983 ident: 10.1016/j.dam.2014.06.025_br000060 article-title: Finding the connected components and maximum clique of an intersection graph of rectangles in the plane publication-title: J. Algorithms doi: 10.1016/0196-6774(83)90012-3 – start-page: 73 year: 1981 ident: 10.1016/j.dam.2014.06.025_br000125 article-title: Computational geometric problems in pattern recognition publication-title: Pattern Recognit. Theory Appl. – volume: 25 start-page: 59 issue: 2 year: 1995 ident: 10.1016/j.dam.2014.06.025_br000080 article-title: Simple heuristics for unit disk graphs publication-title: Networks doi: 10.1002/net.3230250205 – ident: 10.1016/j.dam.2014.06.025_br000020 doi: 10.1007/3-540-45995-2_43 – volume: 78 start-page: 765 issue: 3 year: 2012 ident: 10.1016/j.dam.2014.06.025_br000050 article-title: Space complexity of perfect matching in bounded genus bipartite graphs publication-title: J. Comput. System Sci. doi: 10.1016/j.jcss.2011.11.002 – year: 2006 ident: 10.1016/j.dam.2014.06.025_br000110 – year: 1996 ident: 10.1016/j.dam.2014.06.025_br000015 |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 2.063997 |
| Snippet | In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Bipartite matching Clique Geometric intersection graphs In-place algorithms |
| Title | In-place algorithms for computing a largest clique in geometric intersection graphs |
| URI | https://dx.doi.org/10.1016/j.dam.2014.06.025 |
| Volume | 178 |
| WOSCitedRecordID | wos000343343200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-6771 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLbaoQc4VF1V6CIfeurIVRbHsY-IUkHVokql1dwix2NDKHjQZED8_D4vWYAilUMvUeQozvK-vHx-fv4eQu8Lw-AzKjMCwx9NqElqwpVQhM2ZEU5_k3r54l9fy4MDPpuJ7zEhs_XlBEpr-dWVOP-vpoY2MLZbOnsPc_edQgPsg9FhC2aH7T8Zft8Sn2g1ladHCxj6HwfJBZ88fuGTnOX01OV_tyu3LtLJtzZ2eqQXZ664lvICEstWhxLiXs-6HTPYTw04GmDaPX_91gu_DjXqQ7i7cZHGPtosbfDn4KqOZTvd-TjM9YR22Ur7W47DEKkXO4xuMkYmGSPAF2bXXGsozxOdY9Boj7_ZUC7klgMPsYQTuI6TCUipF1cNS6Ovi2Xf-In1qYVd1tpJBV1UrovKZe5lxUO0lpWF4BO0tr2_O_syEhlzCnrrXVhumIUCNkajNnx4tG5W3OcH3rjDv_OaEVc5fIIex0EG3g7geIoeaPsMbYwM9Rz96GCCB5hggAnuYYIljjDBASa4sbiHCR7DBAeYvEA_P-8e7uyRWGCDKBhpr0jNi0IJVuepLo0E5lboNDVzk-WlMEmqgJyKGliOYeUcfLvQwA814yZXBaspzfOXaGIXVr9CWLhCAzzJBIUDJlFcJbWkSkg-F1QmYhN96F5PdR50VKo7TbWJaPcCq0gEA8GrACZ3n7Z1n2u8RusDjN-gyWp5od-iR-py1bTLdxEjfwAfE3q0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-place+algorithms+for+computing+a+largest+clique+in+geometric+intersection+graphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=De%2C+Minati&rft.au=Nandy%2C+Subhas+C.&rft.au=Roy%2C+Sasanka&rft.date=2014-12-11&rft.issn=0166-218X&rft.volume=178&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1016%2Fj.dam.2014.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2014_06_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |