The computational complexity of the backbone coloring problem for planar graphs with connected backbones

In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance:A simple planar graph G, its connected spanning subgraph (backbone)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 184; s. 237 - 242
Hlavní autori: Janczewski, Robert, Turowski, Krzysztof
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 31.03.2015
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance:A simple planar graph G, its connected spanning subgraph (backbone) H.Question:Is there a λ-backbone coloring c of G with backbone H such that maxc(V(G))≤k? is either NP-complete or polynomially solvable (by algorithms that run in constant, linear or quadratic time). As a result of these considerations we obtain a complete classification of the computational complexity with respect to the values of λ and k. We also study the problem of computing the backbone chromatic number for two special classes of planar graphs: cacti and thorny graphs. We construct an algorithm that runs in O(n3) time and solves this problem for cacti and another polynomial algorithm that is 1-absolute approximate for thorny graphs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2014.10.028