The computational complexity of the backbone coloring problem for planar graphs with connected backbones

In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance:A simple planar graph G, its connected spanning subgraph (backbone)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 184; S. 237 - 242
Hauptverfasser: Janczewski, Robert, Turowski, Krzysztof
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 31.03.2015
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance:A simple planar graph G, its connected spanning subgraph (backbone) H.Question:Is there a λ-backbone coloring c of G with backbone H such that maxc(V(G))≤k? is either NP-complete or polynomially solvable (by algorithms that run in constant, linear or quadratic time). As a result of these considerations we obtain a complete classification of the computational complexity with respect to the values of λ and k. We also study the problem of computing the backbone chromatic number for two special classes of planar graphs: cacti and thorny graphs. We construct an algorithm that runs in O(n3) time and solves this problem for cacti and another polynomial algorithm that is 1-absolute approximate for thorny graphs.
AbstractList In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters and we show that the following problem: * Instance: A simple planar graph , its connected spanning subgraph (backbone) . * Question: Is there a -backbone coloring of with backbone such that ? is either NP-complete or polynomially solvable (by algorithms that run in constant, linear or quadratic time). As a result of these considerations we obtain a complete classification of the computational complexity with respect to the values of and . We also study the problem of computing the backbone chromatic number for two special classes of planar graphs: cacti and thorny graphs. We construct an algorithm that runs in time and solves this problem for cacti and another polynomial algorithm that is -absolute approximate for thorny graphs.
In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance:A simple planar graph G, its connected spanning subgraph (backbone) H.Question:Is there a λ-backbone coloring c of G with backbone H such that maxc(V(G))≤k? is either NP-complete or polynomially solvable (by algorithms that run in constant, linear or quadratic time). As a result of these considerations we obtain a complete classification of the computational complexity with respect to the values of λ and k. We also study the problem of computing the backbone chromatic number for two special classes of planar graphs: cacti and thorny graphs. We construct an algorithm that runs in O(n3) time and solves this problem for cacti and another polynomial algorithm that is 1-absolute approximate for thorny graphs.
Author Janczewski, Robert
Turowski, Krzysztof
Author_xml – sequence: 1
  givenname: Robert
  surname: Janczewski
  fullname: Janczewski, Robert
  email: skalar@eti.pg.gda.pl
– sequence: 2
  givenname: Krzysztof
  surname: Turowski
  fullname: Turowski, Krzysztof
  email: Krzysztof.Turowski@eti.pg.gda.pl
BookMark eNp9kDtPwzAUhS1UJNrCD2DLyJJiu0mTiAlVvKRKLEVis5zrm8YlsYPtAv33uBQxMlnH95z7-CZkZKxBQi4ZnTHKFtfbmZL9jFOWRT2jvDwhY1YWPF0UBRuRcfQsUs7K1zMy8X5LKWVRjUm7bjEB2w-7IIO2RnY_qsMvHfaJbZIQ67WEtzrOi6XOOm02yeBs3WGfNNYlQyeNdMnGyaH1yacObfQZgxBQ_UX9OTltZOfx4vedkpf7u_XyMV09Pzwtb1cp8JKHtOSQN1AVGecSgdEm4zlUdcXmqMq8UAAoOXBay5o2kKtCKVpXc2gwxwwA5lNydewbV3zfoQ-i1x6wi0ui3XnBIpAqKzJWRSs7WsFZ7x02YnC6l24vGBUHqmIrIlVxoHr4ilRj5uaYwXjDh0YnPGg0gEq7eLFQVv-T_gZbJ4Tt
Cites_doi 10.1073/pnas.39.4.315
10.1016/j.dam.2014.01.011
10.1016/S0166-218X(02)00575-9
10.1016/0012-365X(80)90236-8
10.1016/j.disc.2008.04.007
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2014.10.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 242
ExternalDocumentID 10_1016_j_dam_2014_10_028
S0166218X14004739
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  grantid: DEC-2011/02/A/ST6/00201
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c282t-82c5fc97422aec10f425c9b913ed857dccea2c20bab0fc5d7dd0b93cfe5e4ccc3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352174700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Fri Jul 11 12:37:02 EDT 2025
Sat Nov 29 07:26:50 EST 2025
Sat Apr 29 22:45:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Backbone chromatic number
Planar graphs
Cacti
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-82c5fc97422aec10f425c9b913ed857dccea2c20bab0fc5d7dd0b93cfe5e4ccc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.dam.2014.10.028
PQID 1677947419
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1677947419
crossref_primary_10_1016_j_dam_2014_10_028
elsevier_sciencedirect_doi_10_1016_j_dam_2014_10_028
PublicationCentury 2000
PublicationDate 2015-03-31
PublicationDateYYYYMMDD 2015-03-31
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-31
  day: 31
PublicationDecade 2010
PublicationTitle Discrete Applied Mathematics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dailey (br000020) 1980; 30
Giaro, Janczewski, Małafiejski (br000030) 2003; 129
Broersma, Fujisawa, Marchal, Paulusma, Salman, Yoshimoto (br000015) 2009; 309
Havet, King, Liedloff, Todinca (br000040) 2014; 169
Broersma (br000005) 2003
Broersma, Fomin, Golovach, Woeginger (br000010) 2003; vol. 2880
Garey, Johnson (br000025) 1979
R. Janczewski, K. Turowski, The backbone coloring problem for bipartite backbones, Graphs Combin. (in press).
Harary, Uhlenbeck (br000035) 1953; 39
Giaro (10.1016/j.dam.2014.10.028_br000030) 2003; 129
Garey (10.1016/j.dam.2014.10.028_br000025) 1979
Harary (10.1016/j.dam.2014.10.028_br000035) 1953; 39
10.1016/j.dam.2014.10.028_br000045
Broersma (10.1016/j.dam.2014.10.028_br000015) 2009; 309
Havet (10.1016/j.dam.2014.10.028_br000040) 2014; 169
Broersma (10.1016/j.dam.2014.10.028_br000010) 2003; vol. 2880
Broersma (10.1016/j.dam.2014.10.028_br000005) 2003
Dailey (10.1016/j.dam.2014.10.028_br000020) 1980; 30
References_xml – volume: 129
  start-page: 371
  year: 2003
  end-page: 382
  ident: br000030
  article-title: A polynomial algorithm for finding
  publication-title: Discrete Appl. Math.
– volume: vol. 2880
  start-page: 131
  year: 2003
  end-page: 142
  ident: br000010
  article-title: Backbone colorings for networks
  publication-title: Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in Computer Science
– volume: 309
  start-page: 5596
  year: 2009
  end-page: 5609
  ident: br000015
  article-title: -backbone colorings along pairwise disjoint stars and matchings
  publication-title: Discrete Math.
– start-page: 65
  year: 2003
  end-page: 79
  ident: br000005
  article-title: A general framework for coloring problems: old results, new results, and open problems
  publication-title: Combinatorial Geometry and Graph Theory
– volume: 30
  start-page: 289
  year: 1980
  end-page: 293
  ident: br000020
  article-title: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete
  publication-title: Discrete Math.
– volume: 39
  start-page: 315
  year: 1953
  end-page: 322
  ident: br000035
  article-title: On the number of Husimi trees. I.
  publication-title: Proc. Natl. Acad. Sci.
– volume: 169
  start-page: 119
  year: 2014
  end-page: 134
  ident: br000040
  article-title: (Circular) backbone colouring: Forest backbones in planar graphs
  publication-title: Discrete Appl. Math.
– reference: R. Janczewski, K. Turowski, The backbone coloring problem for bipartite backbones, Graphs Combin. (in press).
– year: 1979
  ident: br000025
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– year: 1979
  ident: 10.1016/j.dam.2014.10.028_br000025
– volume: 39
  start-page: 315
  issue: 4
  year: 1953
  ident: 10.1016/j.dam.2014.10.028_br000035
  article-title: On the number of Husimi trees. I.
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.39.4.315
– ident: 10.1016/j.dam.2014.10.028_br000045
– volume: 169
  start-page: 119
  year: 2014
  ident: 10.1016/j.dam.2014.10.028_br000040
  article-title: (Circular) backbone colouring: Forest backbones in planar graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2014.01.011
– start-page: 65
  year: 2003
  ident: 10.1016/j.dam.2014.10.028_br000005
  article-title: A general framework for coloring problems: old results, new results, and open problems
– volume: 129
  start-page: 371
  year: 2003
  ident: 10.1016/j.dam.2014.10.028_br000030
  article-title: A polynomial algorithm for finding T-span of generalized cacti
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(02)00575-9
– volume: 30
  start-page: 289
  issue: 3
  year: 1980
  ident: 10.1016/j.dam.2014.10.028_br000020
  article-title: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(80)90236-8
– volume: 309
  start-page: 5596
  issue: 18
  year: 2009
  ident: 10.1016/j.dam.2014.10.028_br000015
  article-title: λ-backbone colorings along pairwise disjoint stars and matchings
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.04.007
– volume: vol. 2880
  start-page: 131
  year: 2003
  ident: 10.1016/j.dam.2014.10.028_br000010
  article-title: Backbone colorings for networks
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.0605202
Snippet In the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 237
SubjectTerms Algorithms
Approximation
Backbone
Backbone chromatic number
Cacti
Coloring
Complexity
Computation
Graphs
Planar graphs
Title The computational complexity of the backbone coloring problem for planar graphs with connected backbones
URI https://dx.doi.org/10.1016/j.dam.2014.10.028
https://www.proquest.com/docview/1677947419
Volume 184
WOSCitedRecordID wos000352174700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLagw2HmgFjFsMlIiAMoKGsdH0fQEUspHDpSbpFXMQNKOkkHlf56nmM7SQeBhgOXqHJtp_X79PzZ_vweQs81TVNNJQ-oyFiQSlju8ITIIFKx1pwkOrZBkuZksciLgn5xOt22SydAqirfbOjqv5oaysDY5ursP5i77xQK4DMYHZ5gdnhe2fCiy9Xg9_k62bjaOPGFYZqciW-8rkxFp8BziWU61eHqO6tY86qLZd324vQKXKOhq65pO6a1b0_B-wD97kntpz4a7CBRBHxtwaXaPNlW0T2oO5raf_Ox2f5st-tajzckoszf0Bv2KKfTAJhDsetk07GbtIFe3Iwb2_havzlzu69wBm8yIQOi9LWR4bmr5DuBsxefy-OT-bxczorli9V5YHKKmbN3l2DlOtqLSUbzCdo7ej8rPozCi5nYeft-Q244fwIelrqo8Pav-PPwThl46ff8idFcmts7wrK8hW66lQY-sgi5ja6p6g46GBnmLvoKWME7WMEDVnCtMdTF3uDYYwU7rGDACrZYwRYr2GAF91jpm7b30MnxbPnmXeBSbwQC1uDrII9FpgWsNeOYKRGFGly7oJxGiZJ5RqQQisUiDjnjoRaZJFKGnCZCq0ylQojkPppU0P8DhEUK3Uy1YFTJVJIw54qHIiNE61gqlhyil374ypWNsFJ66eFZCWNdmrE2RTDWhyj1A1w6imipXwmg-VuzZ94YJbhPcybGKlVftGU0JTAjAa2mD69Q5xHaHxD_GE3WzYV6gm6IH-vTtnnq4PUL9TuX1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+computational+complexity+of+the+backbone+coloring+problem+for+planar+graphs+with+connected+backbones&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Janczewski%2C+Robert&rft.au=Turowski%2C+Krzysztof&rft.date=2015-03-31&rft.issn=0166-218X&rft.volume=184&rft.spage=237&rft.epage=242&rft_id=info:doi/10.1016%2Fj.dam.2014.10.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon